Modélisation spatiale de la crise des subprime:

Mémoire présenté par

Gaberell Simon
Licencié de l’Institut des Hautes Etudes Internationales et du Développement

Sous la direction du Professeur Lawrence R.
Institut des Sciences de l’Environnement, groupe d’Ecologie Humaine

Mémoire No 007

2009

INSTITUT DES SCIENCES DE L’ENVIRONNEMENT
DROITS D’AUTEUR

Les citations tirées du présent mémoire ne sont permises que dans la mesure où elles servent de commentaire, référence ou démonstration à son utilisateur. La citation doit impérativement indiquer la source et le nom de l’auteur. La loi fédérale sur le droit d’auteur est applicable.
Remerciements

Je tiens à remercier toutes les personnes qui, de près ou de loin, ont contribué à la réussite de ce mémoire de master :

En premier lieu, je remercie ma famille et ma copine pour leur soutien inconditionnel, malgré les moments difficiles. Mes amis, qui me sont restés proches malgré mes absences.

Alexandre Babak Hedjazi et Rémi Baudoui sans qui mes recherches à l’Université de Californie n’auraient pas été possibles.

Roderick Lawrence, mon directeur de mémoire pour toutes ses remarques pertinentes et pour avoir participé, depuis Genève, à la planification et à l’accomplissement de ce travail.

Emmanuel Castella pour ces remarques essentielles sur le déroulement de mon analyse statistique.

Theresa Firestine, Lehua Acher pour m’avoir accordé de leur temps et facilité mon séjour à l’Université de Californie.

Marie Aw, Françoise Claquin, Emmanuel Saceirio et toute l’équipe de UCHA pour m’avoir permis de bénéficier de conditions optimales sur place.

Je tiens à remercier tout particulièrement :

Léobardo Estrada, pour sa disponibilité, sa gentillesse, son accueil, son sérieux, nos pauses cafés du matin et pour toute l’aide infiniment précieuse qu’il m’a fournie durant mon séjour à UCLA. J’y ai passé des moments fantastiques, c’est en partie grâce à vous, merci.

Anthony Lehmann, pour son ouverture d’esprit, pour m’avoir accepté dans son espace de travail, pour m’avoir initié à l’utilisation de GRASP et m’avoir supporté pendant ces longues heures de travail, y compris les fins de semaine, merci.

Enfin tout le groupe d’étudiants avec qui j’ai passé des moments magnifiques durant mes deux années de master, dans le désordre : Sylvie Gerardi, Delphine Vacelet, Laila Wernli, Gaïda Ali Ahmad, Ludovic Gaudard, Yannick Arlaux, Sebastiano Schneebeli, Djamil Beloucif, Christian Scherrer, Yann Laubscher, Regina Gama et tout ceux que j’ai pu oublié.
Tables des Matières

Remerciements.. 3
Résumé.. 7

1. Introduction .. 8
 1.1 Contexte et Problématique ... 8
 1.2 Question de recherche .. 10
 1.3 Enjeux .. 11
 1.4 Plan du travail ... 12

2. Cadre théorique et conceptuel ... 13
 2.1 Crise des Subprime ... 13
 2.1.1 Introduction .. 13
 2.1.2 Théorie de la crise .. 13
 2.1.3 La formation de la bulle immobilière .. 14
 2.1.4 La transformation du système bancaire américain : les techniques de titrisation ... 17
 2.1.5 Les innovations financières .. 19
 2.1.6 L’éclatement de la bulle .. 21
 2.1.7 La transformation des anciens schémas d’exclusion raciale 22
 2.1.8 Conclusion ... 24
 2.2 Les Déterminants du prix de l’immobilier à l’échelle du quartier 26
 2.2.1 Introduction .. 26
 2.2.2 Le quartier .. 26
 2.2.3 Les quartiers et la crise immobilière ... 28
 2.2.4 Les déterminants du prix de l’immobilier ... 29
 2.3 Les méthodes d’analyse hédonistes .. 31
 2.3.1 Introduction .. 31
 2.3.2 Dépendance spatiale ... 32
 2.3.3 Le choix de la fonction .. 33
 2.3.4 Les variables environnementales locales .. 33
 2.4 Hypothèses de Travail .. 36

3. Sources et méthodologie ... 37
 3.1 Région d’étude ... 37
 3.2 Données .. 40
 3.2.1 Variable Dépendante ... 42
 3.2.2 Variables structurelles ... 43
 3.2.3 Variables spécifiques à la crise ... 44
Table des Matières

3.2.4 Variables d’accessibilité ... 47
3.2.5 Variables de quartier ... 50
3.2.6 Variables environnementales ... 57
3.3 Méthode .. 62
3.3.1 Modèles statistiques ... 62
3.3.2 Plan d’analyse .. 64
4. Présentation des Résultats ... 65
 4.1 Analyse Bivariée .. 65
 4.1.1 Examen spatial de la variable dépendante 65
 4.1.2 Examen du potentiel explicatif des variables explicatives 66
 4.2 Analyse Multivariée ... 69
 4.2.1 Introduction .. 69
 4.2.2 Régression des variables spécifiques à la crise (Hypothèse H1) ... 69
 4.2.3 Examen de la distribution des variables explicatives 70
 4.2.4 Examen des corrélations ... 73
 4.2.5 Ordination : Analyse en Composantes Principales (ACP) 75
 4.2.6 Sélection et élaboration d’un modèle prédictif 78
 4.2.7 Validation du modèle ... 79
 4.2.8 Interprétation ... 80
 4.2.9 Prédictions Spatiale .. 82
5. Discussion des résultats ... 84
 5.1 Analyse Bivariée .. 84
 5.1.1 Examen Spatial des Données ... 84
 5.1.2 Examen du potentiel explicatif ... 85
 5.2 Analyse Multivariée ... 85
 5.2.1 Régression (hypothèse H1) ... 85
 5.2.2 Examen des corrélations ... 86
 5.2.3 Analyse en composantes principales 86
 5.2.4 Elaboration, validation et interprétation du modèle prédictif 90
 5.2.5 Prédictions Spatiales ... 92
 5.2.6 Conclusion ... 92
6. Conclusion .. 95
 6.1 Démarche et principaux résultats ... 95
 6.2 Connaissances acquises et leur portée 96
 6.3 Difficulté et limites de la recherche .. 97
 6.4 Pistes pour un approfondissement .. 99
Table des Matières

Liste des Figures ... 102
Liste des Tableaux .. 103
Bibliographie ... 104
Le point de départ de ce travail est la crise des subprime qui a éclatée début 2007 sur le territoire américain, avant de s’étendre de manière globale. Avant de devenir une crise économique et financière mondiale, cette crise est avant tout la pire crise immobilière traversée par les États-Unis.

Ce travail offre un point de vue original sur cette crise en s’intéressant à la modélisation spatiale de la dépréciation des valeurs immobilières résidentielles entre les quartiers du comté de Los Angeles. En effet, si les origines de la crise et ses implications économiques ont été bien documentées par la littérature scientifique, il est important de noter que ses conséquences, dont la magnitude se reflète dans le taux de dépréciation du prix de vente moyen de l’immobilier résidentiel, varient très largement entre les différents quartiers d’une même métropole.

Un ensemble de 18 variables explicatives, regroupant des variables spécifiques à la crise, des variables ethniques, démographiques, socio-économiques, d’accessibilité et des variables environnementales, a été mis en place dans ce but. Une méthode statistique quantitative semi-paramétrique (modèles additifs généralisés, GAMs) a été utilisée pour déterminer l’influence relative respective de ces variables. Ces modèles permettent d’obtenir des relations plus précises entre les variables.

Les résultats de cette recherche montrent, en premier lieu, que l’ampleur de la bulle immobilière et le taux de prêts subprime constituent les principaux déterminants des variations spatiales de la dépréciation des valeurs immobilières entre les quartiers du comté de Los Angeles.

En deuxième lieu, il a été mis en évidence que les variables socio-économiques et les variables ethniques sont étroitement liées dans les quartiers du comté de Los Angeles. Ensemble, elles forment le troisième plus important déterminant des variations de la dépréciation entre quartiers.

Enfin, comme groupe, les variables environnementales locales, notamment la densité d’espaces verts publics par quartier, sont significatives dans notre modèle, mais elles ont le pouvoir explicatif relatif le plus faible.
Introduction

1. Introduction

1.1 Contexte et Problématique
Le monde en général, et les États-Unis en particulier, ont fait et font toujours face à une crise économique et financière globale dont l’ampleur reste sans précédent. La mémoire collective oublie cependant rapidement qu’avant de devenir une crise financière globale cette crise a été et est avant tout la pire crise immobilière traversée par les États-Unis depuis la Grande Dépression de 1929. Au début de l’année 2009, plus de 1.5 millions de maisons avaient déjà été perdues par leurs propriétaires, saisies par défaut de paiements (Center for Responsible Lending, CRL 2009). Deux millions de ménages détenant des prêts subprime sont actuellement en défaut de paiement et risquent à leur tour, de perdre leur maison. Dans une étude sur l’état actuel de la crise en fin d’année 2008, le Crédit Suisse (2008) projetait que les saisies de maisons concernant tous les types de prêts immobiliers toucheront près de 8.1 millions de ménages américains dans les cinq prochaines années soit près de deux millions supplémentaires que les projections au début de la même année. Ce chiffre signifie que près de un ménage sur six, qui bénéficie d’un prêt hypothécaire, risque très fortement de perdre sa maison. Les saisies de maisons ont des effets dévastateurs en termes de déplacements de population, de faillite et de drames familiaux.

Les actifs immobiliers jouent un rôle prépondérant dans l’économie américaine aux niveaux macro et microéconomiques. La valeur de ces actifs en milliard de dollars en font des actifs financiers importants1, et sont souvent le seul actif de valeur détenu par la plupart des ménages américains (Sheppard 1997, Zabel 1999). En août 2008, le centre pour des prêt responsables (CRL) estimaient que la crise immobilière allaient faire perdre au pays de 9 à 10 billions (mille milliards) de dollars en termes de richesse (« wealth ») des ménages américains, soit 30'000 dollars par personne (Garrison 2009).

Les implications économiques de cette crise immobilière sont également bien documentées. Au niveau macro, les marchés financiers ont été amenés proche de l’implosion fin 2008. En octobre de la même année, 700 premiers milliards de dollars ont été octroyés par le gouvernement fédéral américain pour éviter que les institutions financières les plus renommées mondialement ne s’écroulent. Les conséquences de la crise immobilière se sont ensuite répercutées à tous les secteurs de l’économie provoquant un ralentissement de la croissance mondiale.

1 Voir chapitre Conclusion de la crise des subprime
Introduction

La magnitude de la crise se reflète dans le déclin des prix de vente moyen l’immobilier résidentiel. En avril 2008, le prix de vente moyen avait décliné de près de 27% par rapport à la même période de l’année précédente et de près de 50% par rapport à son pic de 2006 (Difflley, Global Insight 2008). Les prix de vente ont continué de chuter jusqu’au deuxième quartier 2009, où une certaine stabilisation, sur le comté de Los Angeles, est apparue (Data Quick 2009).
Introduction

Les implications de la crise sont également importantes pour les localités. La perte de valeur immobilière a réduit le volume de taxe perçu par les municipalités, qui dans le même temps doivent faire face à une augmentation des cambriolages et des crimes dans les quartiers particulièrement touchés par la crise (Immergluck et Smith 2006a). La provision de fonds disponibles est de fait limitée et réduit la capacité des municipalités à faire face à la crise. La qualité des services publics diminue alors que les besoins augmentent, entraînant un peu plus certains quartiers vers le déclin (Immergluck et Smith 2006a, Schuetz et al. 2008).

1.2 Question de recherche

Si les origines de la crise et ses implications économiques ont été bien documentées par la littérature scientifique, il est important de noter que les conséquences de la crise, dont la magnitude se reflète dans le taux de dépréciation du prix de vente moyen de l’immobilier résidentiel, varient très largement entre les différents quartiers d’une même métropole (Ong 2008, Kaplan 2009).

Néanmoins, l’échelle du quartier reste sous étudiée par la littérature scientifique. La plupart des auteurs se sont concentrés sur les déterminants spatiaux des prêts subprime, et ont ignoré la dynamique des marchés immobiliers et l’importance des caractéristiques de localisation. Nombreuses recherches hédoniques ont montré que les caractéristiques de localisation, les caractéristiques structurelles, démographiques, socioéconomiques, ethniques ou d’accessibilité, affectent la volonté marginal d’un propriétaire de payer pour son logement.

Ce travail aborde la crise des subprime dans cette perspective, en examinant la relation entre les caractéristiques de localisation et le taux de dépréciation à l’échelle du quartier. Il tente notamment d’étudier le lien étroit existant entre géographie de la crise, dominante ethnique du quartier et statut socioéconomique des résidents.

Cependant, cette étude se propose d’étendre les caractéristiques de localisation aux caractéristiques environnementales locales. L’importance de la qualité environnementale d’une localisation est une caractéristique souvent négligée et qui affecte la volonté marginale d’un acheteur de payer pour son logement.

C’est afin de combler ce manque que nous souhaitons, dans ce travail, examiner quelle peut être l’influence des variables environnementales locales sur la dépréciation du prix de l’immobilier résidentiel, dans les quartiers du comté de Los Angeles, touchés par la crise des subprime ?
Introduction

1.3 Enjeux
Notre recherche, fondamentalement interdisciplinaire, est principalement motivée par la perspective de montrer que les variables environnementales à l’échelle du quartier comptent. L’originalité principale de ce travail est de lier, pour la première fois à notre connaissance, la crise des subprime, l’échelle du quartier et les variables environnementales locales.

L’identification et la compréhension d’indicateurs, notamment environnementaux, déterminants à l’explication des variations de la dépréciation des prix de l’immobilier résidentiel sur le territoire du comté de Los Angeles, peut fournir une aide précieuse aux politiques publiques visant à protéger les communautés contre les fluctuations de prix de l’immobilier, qui exposent les propriétaires à la saisie de leur maison.

L’inclusion des variables environnementales locales comme déterminants monétaires de la valeur d’un bien immobilier n’est, à notre connaissance, pas prise en considération par les différents programmes gouvernementaux, fédéraux ou municipaux, visant à soutenir les municipalités face aux conséquences de la crise sur les quartiers. C’est pour cette raison, que nous pensons que notre travail apporte une contribution à la réflexion globale sur l’importance de la considération des variables environnementales dans les projets d’urbanisme locaux.
1.4 Plan du travail

Notre travail est une recherche avant tout interdisciplinaire, en ce sens qu’il intègre les méthodes d’analyse d’approches différentes (géographie, environnement, économie, modélisation géographique), afin d’aborder un problème dans toute sa complexité. Il se divise en trois parties :

En premier lieu, le cadre théorique, nous permet de discuter des concepts et méthodes propre à ce travail. Le concept de crise des subprime est traité de manière centrale, mais également le concept de quartier et ses indicateurs, ainsi que les méthodes d’analyse hédoniques et le concept de variables environnementales locales. Cette première partie permet ainsi de structurer la démarche de ce travail et nous autorise à formuler trois hypothèses de recherche, qui sont autant de réponses provisoires à la question de recherche formulée.

La deuxième partie présente notre terrain d’étude, les données utilisées et la méthodologie que nous appliquons. 18 indicateurs ont été choisis pour cette étude. Il s’agit d’indicateurs socio-économiques, démographiques, ethniques, d’accessibilité et d’indicateurs environnementaux. Dans un premier temps, nous allons évaluer l’influence de l’explosion de la bulle immobilière et des prêts subprime sur la dépréciation des prix de l’immobilier résidentiel sur le comté de Los Angeles. Dans un deuxième temps, tous nos indicateurs sont inclus dans notre analyse, afin de déterminer quelles sont les caractéristiques principales qui expliquent les variations de dépréciation entre les quartier. Enfin, nous allons tenter de créer un modèle de prédictions spatiales, à partir d’une sélection de nos variables explicatives, afin de percevoir quelle est concrètement l’influence des variables environnementales dans la dépréciation du prix de vente de l’immobilier résidentiel.

Les résultats de notre analyse sont discutés dans la dernière partie et comparés aux conclusions des autres travaux abordant le sujet. Enfin, nous concluons ce travail en rappelant les grandes lignes de notre démarche, les principaux résultats obtenus et les connaissances acquises. Nous mettons également en évidence les limites de notre recherche et nous proposons quelques pistes possibles d’approfondissement.
2. Cadre théorique et conceptuel
Avant de commencer la partie empirique de ce travail, il convient de présenter les concepts de notre problématique. La crise des subprime, le concept de quartier et ses indicateurs, les variables environnementales locales ainsi que les analyses hédoniques sont les quatre objets centraux de notre travail.
La crise des subprime est au cœur de la problématique de cette recherche, c’est pourquoi le chapitre suivant tente d’offrir une compréhension globale de ce phénomène complexe.

2.1 Crise des Subprime
Les termes crise des subprime ou crise des saisies (selon l’appellation souvent utilisée aux Etats-Unis de « foreclosure crisis ») sont utilisés dans ce travail, afin de désigner la crise immobilière qui a éclaté sur le sol américain à la fin de l’année 2006.

2.1.1 Introduction
Ce chapitre tente de fournir un exposé clair des tenants et aboutissants de la crise des subprime.

2.1.2 Théorie de la crise
Il développe dans les années septante l’idée que les crises de surendettement se préparent en période de prospérité et que les agents économiques (entreprises, ménages) profitent de la croissance et des taux d’intérêt bas pour emprunter parfois au-delà du raisonnable. C’est ce qu’il appelle le « paradoxe de la tranquillité » (Minsky 1992). Cependant, lorsque les taux d’intérêt se retournent à la hausse, ou que les prix des actifs visés par l’emprunt baissent, l’endettement qui paraissait soutenable, compte tenu du niveau modéré des taux et de
l’augmentation potentielle de la valeur des actifs, devient insupportable et vire au surendettement (Wray 2008).

Selon Minsky, le système financier est donc instable par nature et passe nécessairement d’un état de stabilité, dominé par le régime couvert, à un état d’instabilité, dominé part la spéculation (Minsky 1992). Il distingue ainsi trois régimes distincts de financement par les agents économiques:

Le premier régime de financement, qu’il qualifie de couvert, concerne celui où le rendement des investissements (le revenu de la somme empruntée) permet aux emprunteurs d’assurer aussi bien le remboursement du principal que le versement des intérêts.

Le second régime, qualifié de spéculatif, concerne celui où le rendement attendu couvre le paiement des intérêts, mais est insuffisant à assurer le remboursement principal. Dans cette situation, l’emprunteur est constamment obligé de reconduire sa dette.

Enfin, le troisième régime, qualifié de cavalerie, pyramide ou financement à la Ponzi, concerne celui où le rendement attendu est même insuffisant à couvrir les seuls intérêts. L’emprunteur est donc forcé, pour s’acquitter de ces derniers d’emprunter davantage ou de vendre ses actifs.

Au sortir d’une phase de crise, le secteur financier est généralement bridé par les réglementations et les institutions de régulation mise en place, ainsi que par la prudence des prêteurs et des emprunteurs encore impressionnés par les récentes faillites (Minsky 1992). Dans cette première phase du cycle, le financement couvert domine. Puis, la prospérité se développe, l’innovation financière augmente, la vigilance publique et privée se relâche, la libéralisation et l’endettement s’accélère, finançant des projets de plus en plus spéculatifs et autorisant l’arrivée des autres catégories d’emprunteurs sur le marché. Le système devient alors instable, propice à l’arrivée d’une crise.

2.1.3 La formation de la bulle immobilière
En 1929, éclate une première crise financière basée sur la spéculation immobilière, l’euphorie des marchés liée à la période d’entre deux guerres, l’innovation financière et l’endettement facilité de la classe moyenne américaine (Galbraith 1970, Attali 2008). Cette crise a eu pour conséquence pour beaucoup de propriétaires, la perte, non seulement de leur emploi, mais également de leur maison, face à l’incapacité à pouvoir rembourser ou refinancer leur prêt auprès des banques (Aalbers 2008).

A la suite de cette crise, le marché bancaire et le marché des prêts hypothécaires se sont régularisés et institutionnalisés, sous les présidences de Hoover et Roosevelt (Attali 2008). Par exemple, le Glass Steagall Act sépare les banques d’affaires et de dépôt, interdisant à ces dernières la possibilité d’investir sur les marchés financiers. L’état fédéral américain subventionne également la construction de maisons en fournissant des liquidités aux banques commerciales afin de favoriser l’émission de crédits hypothécaires. Durant cette période de régulation, le prêt hypothécaire est standardisé sur une période de 30 ans et l’administration fédérale de l’immobilier (FHA, Federal Housing Administration) est créée pour fournir des prêts hypothécaires aux ménages à revenus modestes (Dymski 2009).

Durant cette période qui suit la crise, les banques ne prêtent raisonnablement qu’au premier régime d’emprunteurs de Minsky, ceux qui avancent à couvert. Le gouvernement fédéral crée également deux banques d’investissements semi-privées, Fannie Mae et Freddie Mac qui permettent d’intégrer les différents marchés hypothécaires américains en un marché unifié et de mutualiser ainsi les risques à l’ensemble du pays (Dymski 2008).

Ces diverses institutions ont joué un rôle pivot dans la transformation du marché hypothécaire américain. Elles ont favorisé l’accès à la propriété aux classes modestes, mais ont également développé les techniques de titrisation qui sont l’une des origines du déclenchement de cette crise.

années 90. L’expansion économique mondiale, couplée à une période de dérégulation, sont les deux causes qui font repartir ce taux, qui passe de 64 à 69% en dix ans, une augmentation importante dans un laps de temps aussi court (Kochhar et al. 2009).

En effet, depuis les années 90, la croissance mondiale ne cesse de progresser et atteint une moyenne annuelle supérieure à 5% (Pastré 2008). Cette croissance entraîne un excès de liquidité global sur le marché américain, dont les facteurs sont à la fois exogènes et endogènes, et qui favorise l’émission de prêt :
Exogène, par la progression très rapide des réserves de change des banques centrales des pays émergents (la Chine en particulier), grands exportateurs de produits de consommation bon marché aux Etats-Unis et qui réinvestissent une partie de leurs excédents sur les marchés internationaux. Ces sommes sont ensuite réinjectées indirectement dans l’immobilier résidentiel américain par des investissements financiers (Attali 2008, Jorion 2008).

Cet afflux de capitaux dans l’immobilier résidentiel américain crée les conditions d’une bulle immobilière aux Etats-Unis (Belsky 2008).
En effet, cet excédent de liquidité a maintenu des taux d’hypothécaires artificiellement bas qui ont encouragé la demande immobilière et étendu les possibilités de crédits aux ménages américains (augmentant ainsi artificiellement la catégorie de population tombant sous le régime couvert).

Le paradoxe de ce processus c’est que cet afflux de liquidité, qui facilite l’accession à la propriété, en facilitant l’accès au crédit, rend également son accession plus chère en alimentant la bulle et donc moins sûre pour les ménages américains (Immergluck et Smith 2005a).
L’endettement s’accélère donc, et finance de plus en plus des projets spéculatifs qui attirent les deux autres catégories d’emprunteurs de Minsky. Dans l’optimisme de la montée des prix, des innovations financières se développent afin de permettre l’arrivée sur le marché immobilier de ces nouveaux emprunteurs. Il s’agit également de soutenir la demande immobilière américaine qui favorise la montée des prix et assure des hauts rendements aux investisseurs. La bulle continue donc d’enfler, personne ne veut croire à une baisse des prix.

Ces nouveaux régimes d’emprunteurs (spéculateur et de cavalerie) présentent cependant de grands risques de remboursement pour les institutions de prêts qui n’ont pas été pris en compte par le système financier. Pourquoi ? Tout d’abord, parce que le taux de défaillance des emprunteurs est faible dans un contexte de bulle immobilière et que, à cette époque, l’optimisme sur l’augmentation continue des prix prévaut (Gerardi et al. 2008). Ensuite et surtout, parce que les techniques de titrisation permettent alors aux banques de prêter davantage et de ne plus assumer les risques qu’elles prennent en émettant ces prêts (Dymski 2007).

2.1.4 La transformation du système bancaire américain : les techniques de titrisation
Par définition les banques sont des institutions financières qui absorbent des dépôts de liquidité et émettent des crédits. De ces deux fonctions économiques principales, les banques s’engagent à assumer deux types de risques : le risque de défaut de l’emprunteur et le risque de liquidité assumé par toute entité financière (Dymski 2007).

Ces deux fonctions et ces deux types de risques sont interdépendants. L’augmentation du volume de crédits s’accompagne d’une augmentation des besoins en fonds propres des banques, ce qui a pour effet, normalement, de contraindre ces dernières dans leur offre de prêts.

Dans les années 90, la législation bancaire s’est progressivement libéralisée et dérégularisée (Dymski 2007, Wyly 2009) aux Etats-Unis. Le pays a vu l’apparition d’une vague de fusion et d’innovations institutionnelles à la suite des crises financières de 1982 (Amérique latine et crise de l’épargne aux Etats-Unis). Cette vague de fusion a permis l’apparition de banques suprarégionales ultra compétitives et non contraintes par les limites territoriales. Cette compétition accrue entre les institutions bancaires a eu pour effet de réduire le taux de refus de prêts hypothécaires par l’assouplissement des critères d’attribution (Dymski 2009).

De nouvelles sources de revenus sont alors cherchées, et la titrisation (« securitization ») des créances immobilières offre un excellent moyen de créer des liquidités. Cette innovation
financière permet aux banques de vendre le risque associé à une créance à d’autres entités sur le marché secondaire (le marché financier, Gotham 2006). La vente des créances remet les capacités de prêt de la banque à zéro et diluent les risques sur des milliers d’investisseurs. Cette séparation entre la création de risque et l’absorption des risques a encouragé les institutions de prêts a adopté des stratégies intensives de recherches de liquidité (Dymski 2008).

La volonté des marchés financiers d’absorber ces types de créances a transformé le terrain des possibilités stratégiques pour les banques. Tous les types de prêts sont désormais émettables, puisque les risques n’ont plus à être absorbés. C’est ainsi que, dans l’optimisme général de la montée des prix de l’immobilier, de nouveaux types de prêts hypothécaires se développent afin d’attirer tous les régimes d’emprunteurs et soutenir la demande de crédits immobilier :

Le prêt hypothécaire, « interest only » est ainsi créé pour l’emprunteur spéculateur (c’est à dire l’emprunteur qui ne s’intéresse qu’à la plus value qu’il peut faire sur un logement). Il permet à l’emprunteur de ne verser chaque mois que les intérêts de sa dette. Le principal n’est versé qu’à la fin de l’échéance en une seule fois.

Le prêt « pay option ARM » (Adjusted Rate Mortgage), permet des taux hypothécaires à taux flottants avec différentes options de paiements. Il autorise notamment à payer mensuellement un montant inférieur au taux d’intérêt normalement du. Il s’agit de ce qu’on appelle un amortissement négatif. Le solde est remboursé en même temps que le principal à la dernière échéance, permettant au dernier régime d’emprunteurs (régime de cavalerie) d’entrer sur le marché de l’immobilier.

Enfin, le prêt subprime, dont la formule la plus courante est le « 2/28 », qui signifie que l’emprunteur bénéficie d’un taux promotionnel les deux premières années et du taux réel les 28 années restantes avant le remboursement complet. Il s’agit également d’un prêt à taux flottants, mais dont les intérêts et les frais sont généralement plus élevés que la moyenne (Gerardi et al. 2008, Aalbers 2008).

Les prêts hypothécaires subprime ont augmenté de façon exponentielle depuis 1994, date de leur création (Figure 2).
 Ils sont passés d’un volume d’environ 35 milliards, soit 5% du total des prêts hypothécaires, à un volume de 600 milliards en 2006, soit plus de 20% du total des prêts hypothécaires. 75% d’entre eux sont titrisés. Le pic de cette augmentation est intervenu début 2006, juste avant que les prix commencent à chuter (Avery et al. 2006).

La transformation du système bancaire américain a donc été une des conditions de l’avènement de la crise des subprime. Elle a facilité la création et l’émission de prêts à risques élevés qui ont soutenus la demande en crédits immobilier et ainsi alimentés la bulle de l’immobilier résidentiel. Cette transformation est étroitement liée au développement des marchés financiers et à l’apparition d’innovations financières permettant d’absorber les risques émis par les institutions de prêts.

2.1.5 Les innovations financières
Les premières opérations de titrisation ont vu le jour aux États-Unis au début des années septante, sous l’impulsion de trois agences spécialisées qui disposent de garanties de l’État (Fannie Mae et Freddie Mac précédemment vues dans le chapitre 2.1.4).

Dans un marché hypothécaire classique, l’hypothèque se règle entre le prêteur (les institutions de prêts) et l’emprunteur (les ménages généralement). Dans le marché secondaire, c’est l’investisseur qui achète un portefeuille de créances du prêteur. Les institutions de prêts se retrouvant alors intermédiaires, vendant des hypothèques, provisionnées par des investisseurs. La perspective de hauts rendements de ce type de produits alimenté par la bulle immobilière a motivé de nombreux investisseurs à entrer dans ce marché. En 2005, le marché secondaire des hypothèques représentait ainsi les deux tiers du total du marché des hypothèques américain (Gotham 2006).

La titrisation est donc une opération financière qui consiste à transformer des prêts bancaires traditionnellement illiquides en titres aisément négociables sur des marchés, par

Les actifs immobiliers sont d’abord découpés en tranches selon leur niveau de risques, puis sont structurés dans un portefeuille financier dans des titres adossés à des hypothèques (« Mortgage Backed Securities », MBS) vendus sur les marchés financiers (Attali 2008). Afin de diluer un peu plus les risques associés à ce type de créances, les MBS sont mélangés à d’autres types de crédits, comme les prêts à la consommation, les prêts étudiants ou les cartes de crédits, dans des titres adossés à des actifs (« Asset Backed Securities ») ou des obligations adossées à des actifs (« Collateralized Debt Obligations »). La créance hypothécaire se retrouve donc groupée dans un portefeuille, mélangée à d’autres actifs financiers en vue de diluer ses risques et vendue à des investisseurs financiers.

Ainsi, au lieu de porter sur un portefeuille de créances bancaires (de préférence homogènes), le processus de titrisation des prêts hypothécaires concerne désormais des instruments financiers négociables très hétérogènes qui varient selon leur risque(Jorion 2008). Des « pools » se créent ainsi selon le degré de risques du portefeuille d’actifs. Plus le risque associé au pool est élevé, plus le rendement de l’investissement est important.

La titrisation est donc à la fois totale puisque l’originateur (l’institution de prêt) ne conserve plus rien du risque de crédit, complexe puisque la structuration repose sur des modèles statistiques de probabilité de défaut difficile à appréhender, opaque enfin, puisque l’emprunteur n’est plus présent dans les transactions (Gotham 2006).
L’investisseur financier ne prend dès lors plus comme indice de risque que le niveau de risque catégorisé du papier qu’il détient, sans plus tenir en compte la probabilité de défaut de l’emprunteur. Par ailleurs, il estime à tort que ce papier est aisément liquide, c’est-à-dire vendable en tout temps sur les marchés financiers.

En conclusion, la restructuration du marché hypothécaire, étroitement connecté au marché secondaire par les techniques de titrisation, peut être vue comme un phénomène de financierisation du marché hypothécaire (Aalbers 2008, Newman 2008). La financierisation du marché hypothécaire augmente sa volatilité et sa liquidité, favorise l’émission de prêts qui
soutiennent ainsi la demande immobilière et alimentent, au final, la bulle immobilière. La bulle immobilière dépend donc de la liquidité des marchés financiers. Il en résulte, dans ce sens, non seulement un afflux de liquidité et des émissions de prêts plus risquées, mais aussi un comportement à risque des institutions bancaires, qui met en péril l’ensemble du système (Dymski 2007).

2.1.6 L’éclatement de la bulle
L’éclatement de la bulle immobilière a servi de déclencheur à la crise. La bulle immobilière éclate en 2006, lorsque la demande n’est plus suffisante pour soutenir la montée des prix. Les prix commencent alors à stagner, mettant en difficulté les différents régimes d’emprunteurs dont la présence dépendait de l’augmentation constante des prix de l’immobilier.

Ainsi, l’emprunteur de cavalerie, ne peut plus utiliser son « equity » pour refinancer son prêt et risque de se faire saisir sa maison. En effet, Cagan (2006), a montré qu’avec un déclin des prix de l’immobilier de 10%, presque la moitié des détenteurs d’un prêt à taux flottants auraient alors une « equity » négative. Le nombre de maisons sur le marché augmente ainsi, contribuant alors à la descente des prix.

Figure 3. Evolution du prix de l’immobilier residentiel entre 1987 et 2008

A L’équity correspond à la somme qui reviendrait au vendeur si la vente avait lieu aujourd’hui, déduction faite des dettes à rembourser. Son calcul se base donc sur la somme des fonds propres et de la plus value enregistrée par l’augmentation des prix de l’immobilier (Jorion 2008).
L’emprunteur spéculateur qui comptait sur une plus value de son bien immobilier se voit forcer de louer sa maison en espérant que les prix remontent. L’offre locative dépassant largement la demande, les loyers baissent et ces emprunteurs sont obligés de vendre leurs maisons à perte sur le marché, contribuant ainsi un peu plus à faire descendre les prix. Les prix deviennent si bas que certains emprunteurs à couverts découvrent que la valeur de leur maison est inférieure au montant du prêt restant à rembourser. Ces emprunteurs se retrouvent alors sous l’eau (« underwater ») et n’ont d’autres solutions pour éviter le défaut de paiement que de vendre la maison à la banque qui leur a accordé le prêt, en échange d’un abandon de créance. Cette solution (« short sale ») a été abondamment utilisée dès 2008, car elle permet à la banque de toucher un dividende plutôt que de voir l’emprunteur incapable de rembourser. Le nombre de maisons à vendre augmente encore, entraînant un peu plus les prix de l’immobilier vers le bas.

La crise touche alors toutes les catégories d’emprunteurs et le nombre de saisies de maisons augmente. Il ne s’agit donc pas à posteriori d’une crise des subprime, comme elle a été nommée, mais bien d’une crise globale du marché immobilier américain dont le secteur subprime a été le révélateur ou le détonateur, car le plus exposé, mais qui touche au final, toutes les catégories de prêts.

L’éclatement de la bulle sur les marchés financiers, rend ce type d’actifs hypothécaires en théorie liquide et transparent, complètement illiquide (c’est-à-dire plus du tout négociable), car des doutes apparaissent sur la valeur de ces d’actifs. Plus personne ne souhaite acheter ce type d’actifs et le système passe en quelques mois d’un excès de liquidité à un assèchement de la liquidité (Jorion 2008, Dymski 2009, Wyly et al. 2009). C’est ainsi que le marché secondaire de l’immobilier résidentiel américain s’effondre. Dès lors que les deux tiers du marché hypothécaire américain sont titrisés, on comprend pourquoi la plupart des institutions de prêts ont été durement touchées et ont perdu des milliards de francs dans cette crise.

La crise qui débute en 2007 provoque ainsi un assèchement de la liquidité des marchés financiers, des pertes pour les banques, une contraction du crédit hypothécaire, des pertes patrimoniales pour les ménages américains et un ralentissement économique mondial dont les effets se font encore sentir aujourd’hui.

2.1.7 La transformation des anciens schémas d’exclusion raciale
Les techniques de titrisation et les innovations financières ont alimentées la bulle de l’immobilier résidentiel américain en étendant tout d’abord le champ des possibilités
d’émission de prêts hypothécaires des institutions bancaires, en autorisant ensuite, l’émission de prêts risqués ne tenant pas compte des capacités de remboursement de l’emprunteur.

En effet, les banques, à la recherche de nouvelles sources de financement et attirées par les sommes considérables des transferts d’argent internationaux (« remittances ») effectués dans ces quartiers (Dymski 2009) se sont décidés à atteindre les quartiers à revenu modeste. Les minorités auparavant exclues du système se sont alors retrouvées ciblées par les organismes de crédit pour des prêts hypothécaires (Calem et al. 2004, Hammel 2008).

En raison des anciennes pratique de « redlining », ces quartiers ont la particularité importante d’avoir un taux de ménages sans compte bancaire très élevés et une méconnaissance du système de crédit hypothécaire (Taylor et al. 2004). Des stratégies ont donc été mises en place pour avoir accès à ces catégories de personnes, notamment par l’utilisation de démarcheurs chargés de contacter les clients par téléphone (Squires 2004).

Ces courtiers ont abondamment déversés des prêts de catégories subprime, accompagnés de frais élevés et des termes souvent abusifs, qui ne prennent généralement pas en compte les capacités de remboursement de l’emprunteur. Il s’agit de la catégorie de prêts explicitement nommée de prêts rapaces, « predatory lending » en anglais (Calem et al. 2004, Squires 2004,

Dans la majorité des cas, ces prêts ont permis à des classes de revenus modestes d’avoir accès au marché du crédit. Cependant incapables de payer, ni les intérêts ni le principal (régime de cavalerie), ces ménages se retrouvent bien rapidement dans l’obligation de refinancer leur prêt par un nouveau crédit encore plus cher au risque de perdre leur maison. Les prêteurs rapaces font ainsi profits « by stripping equity and wealth from homeowners in underserved communities through high cost refinance loans » (Taylor et al. 2004, p.27).

2.1.8 Conclusion

Comme la relevé Minsky (1992), le secteur financier est par essence instable et à la source même des cycles économiques et donc des crises. L’analyse des crises financières depuis 1945 a montré que la majorité d’entre elles étaient précédées d’une libéralisation financière\(^3\) (Dymski 1999, Gotham 2006), confirmant ainsi son analyse.

L’origine de la crise hypothécaire américaine ne se trouve donc pas dans l’augmentation impressionnante des défauts de paiement et des saisies de maison, il s’agit là des symptômes de la crise. La crise actuelle a été provoquée par l’explosion de la rapide escalade des prix de l’immobilier résidentiel américain et l’arrivée massive sur le marché immobilier de prêts

\(^3\) Les mécanismes de régulation sont au centre de la théorie de Minsky. Nous ne disposons malheureusement pas du temps ni de la place pour détailler ce concept.
hypothécaires à haut risque à des emprunteurs longtemps exclus du système hypothécaire américain. Cette crise a été rendue possible par la transformation du système bancaire américain et le développement d’innovations financières, qui ont permis aux institutions de prêts d’émettre plus de crédits sans en absorber les risques.

L’expansion du marché hypothécaire américain, qui a alimenté l’économie du pays, a eu pour conséquence la montée des prix de l’immobilier résidentiel. Si elle a augmenté l’accès à la propriété, elle a également contribué à augmenter les coûts de son accessibilité, ses risques et son insécurité (Immergluck et Smith 2005a).

La bulle de l’immobilier résidentiel et sa financiarisation a permis de soutenir, durant de nombreuses années, la croissance du marché intérieur américain. La croissance des États-Unis ces dix dernières années est devenue de plus en plus dépendante du crédit plutôt que du revenu (Aalbers 2008). De ce point de vue, le crédit hypothécaire a été un élément important du régime d’accumulation libéral et a contribué à soutenir la croissance nationale américaine. En conséquence, la crise du marché des hypothèques et la chute des prix de l’immobilier n’ont pas seulement touché les ménages ayant perdu leurs maisons ou les portefeuilles d’investisseurs, mais ont affecté toute l’économie américaine dans sa globalité.

La géographie de la crise est donc passé du local, l’immobilier est par définition spatialement fixe, au national, les institutions de prêts sont par essence nationale, jusqu’au global : le marché hypothécaire est désormais étroitement lié aux marchés financiers internationaux.

Enfin, bien que la plupart des analystes se soit concentré sur l’étude de la crise au niveau national ou international, il est important de noter que les effets de la crise des subprime varient entre les différents quartiers d’une même aire urbaine (Hammel 2008, Kaplan 2008, Ong 2008). La magnitude et la variation de cette crise se perçoivent aisément dans le déclin de la valeur immobilière des maisons. Quels sont ses déterminants à l’échelle du quartier ? Le ciblage des minorités ethniques, pour les catégories de prêts les plus risquées, se reflète-il dans la variation de la dépréciation des valeurs immobilières résidentielles ? Quels sont les facteurs environnementaux qui influencent la valeur immobilière d’un bien résidentiel ?
2.2 Les Déterminants du prix de l’immobilier à l’échelle du quartier

Il convient en premier de définir le concept de quartier, avant de regarder ensuite comment ils ont été affectés par la crise des subprime et d’observer enfin quels sont les indicateurs généralement identifiés par la littérature scientifique pour le définir.

2.2.1 Introduction

Dans ce travail, les termes quartiers et Zip Codes sont employés pour désigner la même entité territoriale. Les Zip Codes sont utilisés par les services postaux américains, afin d’identifier numériquement les aires de livraison dans les villes américaines. Il s’agit d’un code à 5 chiffres. Le premier numéro désigne la région, 9 pour l’ouest américain, tandis que le second et le troisième sont utilisés pour différencier les États. Le quatrième et le cinquième chiffre représentent les aires de distribution locale. Ces aires se rapprochent des aires statistiques définies par le recensement américain (Census Zip Code Tabulation areas, ZCTA).

2.2.2 Le quartier

Il n’est pas de notre volonté de proposer une revue extensive de la littérature sur la notion de quartier. Il s’agit d’une de ces notions difficile à définir, mais dont chacun a une vision précise de sa signification.
Nous suivrons la perspective de Galster (2001) basée sur les travaux de Lancaster (1966), qui définit le quartier comme « a bundle of spatially based attributes associated with clusters of residences, sometimes in conjunction with other land uses » (Galster 2001, p.2111). Cette définition à l’avantage de présenter le quartier comme un ensemble d’attributs spatiaux à définir, sans présumer d’un degré d’étendue ou d’un niveau de relation sociale à l’intérieur de son espace. A partir de cette définition, il est donc possible de proposer un certain nombre de composants caractérisant le quartier, à partir desquels nous pouvons formuler des indicateurs. Galster offre donc une conception qui est quantifiable et testable scientifiquement.

Le quartier est ainsi défini comme un produit complexe constitué de caractéristiques structurelles, démographiques, environnementales, sociales, sentimentales, politiques, d’infrastructures, de proximité, de statut de classe et enfin de niveau de taxe et de service (Galster 2001). Le point commun de toutes ces caractéristiques est leur caractère spatialement fixe. La quantité et la composition de tous ces attributs varient entre les quartiers et dépend donc de leur localisation (Kiel et Zabel 2008). Cela implique qu’il est possible de catégoriser de façon distincte les différents quartiers d’une même région métropolitaine sur cette base.

Cependant, certaines de ces dimensions sont difficilement quantifiables, comme le niveau d’interactions sociales ou le niveau d’identification sociale. Certaines caractéristiques peuvent également être absentes de certains quartiers. Il est également possible que certains attributs se mesurent plus facilement à une échelle différente. Les caractéristiques peuvent ainsi varier grandement d’une rue à l’autre ou bien être semblables pour tout un bloc, comme la qualité d’une école par exemple.

Plusieurs niveaux d’analyse peuvent ainsi être mis en évidence selon le type d’attributs que l’on souhaite étudier (Galster 2001). Il a été ainsi établi que l’échelle d’analyse du comté masque les variations géographique du taux de prêts subprime, qui sont principalement guidées par les géographies urbaines de capital, de classe et, le plus important, de race (Hammel 2008).

L’utilisation des indicateurs de quartiers dans la détermination des prix de l’immobilier, implique également que le consommateur qui fait une offre pour un logement soit informé des caractéristiques de l’endroit où il souhaite habiter, ou tout du moins, qu’il puisse les percevoir (Goodman et al. 2002).
De plus, si ces caractéristiques sont perceptibles par le consommateur, la détermination du prix qu’il est prêt à offrir pour son logement reste basée en comparaison des autres quartiers. Le prix du logement d’un quartier n’est donc pas indépendant du prix des autres quartiers aux alentours. Les indicateurs relatifs sont donc plus à même de fournir des indications satisfaisantes sur le choix du consommateur que des évaluations absolues (Galster 2001). De toutes les manières, la qualité d’un espace géographique reste un phénomène subjectif dont chacun peut avoir une appréciation différente (Marans 2003), c’est pourquoi il est important de mettre en relation des indicateurs qualitatifs et quantitatifs.

Enfin les attributs d’un quartier évoluent avec le temps. La temporalité est un facteur important à prendre en compte dans toute analyse, c’est pourquoi, il est important d’avoir des données provenant d’observations continues, qui offrent des résultats représentatifs sur la durée. Quel que soit l’outil statistique utilisé, le choix des indicateurs doit être pensé avec attention. Il n’existe pas de catalogue prédéfini afin de déterminer le jeu de variables le plus complet (Dubin 1991, Ellen 1997). De plus, comme beaucoup de caractéristiques des quartiers sont interconnectées, il peut être difficile d’en séparer les effets. Il est cependant possible d’identifier plusieurs indicateurs robustes régulièrement utilisés par les chercheurs et utiles à notre recherche.

2.2.3 Les quartiers et la crise immobilière

Il est important de se pencher sur la géographie de la crise, car « given the level of racial and ethnic segregation in U.S. cities, it is minority borrowers who suffer the most [from the crisis]. This is geographical targeting, and this the geographical context that must be included in any analysis of foreclosures. », (Hammel 2008, p.777).

C’est pourquoi, la géographie des saisies de maisons est inégalement distribuée et correspond, la plupart du temps, à la géographie ethnique de la région métropolitaine, au-delà du niveau de revenu et de l’historique de crédit (Wyly et al. 2006, Kaplan et Sommers 2009). Nous pensons que la dépréciation des prix de vente de l’immobilier résidentiel, qui reflète la magnitude de la crise immobilière de 2006 suit la même tendance.

Les gouvernements locaux se voient donc dans l’obligation de couper dans les prestations, bien souvent dans l’éducation, les infrastructures et les services sociaux, réduisant leur marge de manoeuvre pour sortir de la crise. Ils entrent ainsi dans un cercle vicieux qui les plonge un peu plus dans la crise.

Le cercle vicieux des municipalités entraîne un peu plus les quartiers les plus pauvres dans une logique de déclin. Les conséquences de la crise ne sont donc pas également tragiques au niveau individuel mais renforce également l’instabilité des quartiers les plus fragiles les rendant plus vulnérables à la concentration de saisies de maisons dans le futur et à la dépréciation des prix des valeurs immobilières (Schuetz et al. 2008). L’intensité de la crise dans les quartiers les plus vulnérables suggère l’apparition de nouveaux processus de dépossession et de structuration urbaine extrêmement préoccupant (Ashton 2008), c’est pourquoi il est important de comprendre quelles sont les variables qui déterminent les variations de la dépréciation des valeurs immobilières sur le comté de Los Angeles.

2.2.4 Les déterminants du prix de l’immobilier

Le logement est un bien qui se caractérise par trois dimensions : son hétérogénéité, sa durabilité et son immobilité (Kiel et Zabel 2008). Par définition l’immobilier est spatialement

4 Aux Etats-Unis les taxes municipales sont basées en partie sur la valeur immobilière.

Différentes échelles spatiales influencent le prix d’une maison (agglomération, ville, quartier, rue), ce qui implique l’emploi de variables différentes pour caractériser son prix. Toutes ces échelles sont statistiquement significatives dans l’analyse de la détermination du prix de l’immobilier (Kiel et Zabel 2008) :

Les méthodes hédoniques offrent un outil d’analyse performant pour comprendre et évaluer les caractéristiques les plus influentes dans la détermination de la valeur d’un bien immobilier et par conséquent dans la détermination de la dépréciation des prix de l’immobilier résidentiel sur le comté de Los Angeles.
2.3 Les méthodes d’analyse hédonistes

Les méthodes d’analyse hédoniques sont utilisées dans cette recherche car elles permettent d’expliquer le prix de vente d’un bien immobilier par ses caractéristiques. Ce chapitre propose d’introduire les notions théoriques de base de cette méthode, de développer quelques uns de ses enjeux méthodologiques majeurs (dépendance spatiale et choix de la fonction) et enfin d’examiner la notion de variable environnementale que nous allons utiliser lors de notre recherche.

2.3.1 Introduction

La théorie hédonique trouve son origine dans les travaux de Rosen (1974). Selon Rosen, il existe un type de marché implicite (« implicit markets »), qui se réfère au processus de production, d’échange et de consommation de biens généralement échangé en paquets (« bundles », Sheppard 2007). Ces paquets sont composés de caractéristiques qui ne sont pas explicitement vendus sur les marchés, mais dont le prix implicite peut être révélé par les fonctions hédoniques (Palmquist 1984). Cette théorie se fonde donc sur le fait que certains biens, bien que vendus sur un marché unique, sont très hétérogènes. L’immobilier est l’exemple typique d’un produit différencié ou hétérogène. En effet, il s’agit d’un produit dont chaque unité est virtuellement différente de la précédente. Dès lors que chaque unité diffère il n’existe pas de prix unique et uniforme pour tous les types d’unités de produits, même dans le cadre d’un marché totalement compétitif (Palmquist 2005).

Les analyses hédoniques surmontent ces difficultés en affirmant que ce type de biens, bien que globalement hétérogène est composé d’agrégation de parties plus ou moins homogènes. Si l’agrégation globale de ces parties n’a pas de prix commun, ses composants oui, car il existe une offre et une demande pour chacune de ces caractéristiques (Palmquist 1992). Le prix hédonique d’un bien différencié se définit donc comme la somme des prix implicites de ces attributs.

La théorie hédonique suppose un marché parfaitement compétitif avec de nombreux acheteurs et vendeurs parfaitement informés et pouvant se déplacer librement (Taylor 2008). Les chercheurs assument également que l’offre de logement résidentiel est fixe sur le court terme, le prix de vente d’un bien immobilier existant est donc déterminé par sa demande. Le prix de vente d’un logement dépend ainsi des préférences du consommateur pour les caractéristiques du logement souhaité. C’est pourquoi, l’équilibre hédonique requiert que la variation de prix d’un bien immobilier, qui résulte d’une variation de l’un de ses attributs, égale exactement la
volonté marginale de l’acheteur de payer pour le changement de cet attribut (MWTP, Marginal Willingness To Pay, Rosen 1974).

2.3.2 Dépendance spatiale
L’hypothèse qu’il est possible de fixer un prix identique à chaque attribut ne tient pas compte de la réalité géographique de la localisation dans la détermination du prix (Can 1990). Les structures du quartier elles-mêmes, influencent la valeur donnée aux différents attributs par le consommateur. C’est pourquoi, il est important d’utiliser une perspective géographique dans l’analyse hédonique et de tenir compte du facteur spatial dans les analyses statistiques.

Lorsque la valeur d’un bien observé dans une localisation dépend de la valeur des autres biens observés dans la même localisation, il se passe ce qu’on appelle une dépendance spatiale (ou autocorrélation spatiale). La présence d’une dépendance spatiale viole les hypothèses de base de la régression linéaire et rend les estimations statistiques inefficaces (Basu et Thibodeau 1998, Beron et al. 2001, Neill et al. 2007).

Deux explications sont possibles à l’avènement d’une dépendance spatiale (Anselin 1999, Bateman et al. 2002, Kim et al. 2003, Beron et al. 2004, Brasington et Hite 2005, Nelson 2008): soit le jeu de données contient des erreurs, potentiellement dues au fait que les frontières administratives utilisées lors de la récolte de données ne reflètent pas les frontières réelles de notre jeu de données (« spatial errors »); soit parce que la dimension sociale et économique de la localisation joue effectivement un rôle important dans la détermination de notre variable dépendante (« spatial lags »).

Le premier cas résulte du fait que les quartiers tendent à se développer dans le même temps et donc partagent un certain nombre de propriétés, notamment structurelles. De plus, ces quartiers partagent certains services de proximité, comme la police ou ont accès aux mêmes écoles publics (Basu et Thibodeau 1998, Nelson 2008). Il est donc difficile d’identifier les frontières de quartiers les plus appropriées pour effectuer une analyse statistique significative.

La dépendance spatiale doit donc être prise en compte lors de l’analyse statistique. C’est pourquoi, le choix de la fonction hédonique la mieux adaptée aux données à disposition est déterminant pour la suite de notre recherche.

2.3.3 Le choix de la fonction

Il est donc important de choisir un type de fonction permettant, soit de détecter les dépendances spatiales à l’aide d’instruments appropriés, soit de les prendre en compte directement lors de l’analyse statistique.

2.3.4 Les variables environnementales locales
Selon la définition de Marans (2003), les variables environnementales locales incluent à la fois les ressources naturels de loisirs (lac, rivière, forêt, parcs) et la qualité de l’environnement ambiant (qualité de l’air, des eaux, bruit, site de déchet solide ou toxiques). Nous introduisons, dans notre recherche, une troisième catégorie, qui se réfère à la localisation dans l’agglomération par rapport à une variable environnementale (proximité à l’océan, proximité à des sites toxiques, proximité à un site polluant ou bruyant par exemple).

Les variables environnementales se diffèrent des équipements urbains (« urban amenities »), qui incluent des aménagements de loisirs (piscines, court de golf, centre sportif) et des aménagements culturels (théâtre, librairies, concerts).

Le rôle des variables environnementales dans la détermination du prix de l’immobilier résidentiel est central à notre travail. La littérature relative à cette problématique étudie cette relation principalement au travers des analyses hédoniques de prix.

La qualité de l’air (ozone, fines particules, azote), la vue, la qualité de l’eau (pH), la proximité à une utilisation non désirée du sol (usine, site toxique, site de déchets) et la pollution de bruit (aéroport, autoroute, artères principales) ont été les variables les plus utilisées par la littérature scientifique (Boyle et Kiel 2001). L’utilisation de plusieurs variables environnementales améliore, de manière générale, l’efficacité du modèle (Smith et Huang 1993 et 1995, Zabel et Kiel 2000, Boyle et Kiel 2001).

Cadre Théorique

hédonique, dès lors que c’est exactement ce phénomène que nous cherchons à calculer. Certains polluants atmosphériques, par exemple, ne jouent pas de rôle dans la détermination du prix d’un bien immobilier, car ils ne sont pas perçus par le consommateur. Enfin, l’utilisation de variables environnementales localisées est préconisée dans les analyse hédoniques, car c’est uniquement dans ce cas qu’un changement environnemental peut être déterminé dans le prix implicite d’un logement (Palmquist 1992, Baranzini et al. 2008a).
2.4 Hypothèses de Travail
Les hypothèses de travail sont les réponses provisoires à la question de recherche formulée et fondée sur une réflexion théorique et sur un travail exploratoire préalable. Elles représentent le fil conducteur de notre travail, qui complémentent la question de départ. La suite de notre travail, consistera à tester nos hypothèses sur nos données d’observation.

Ce que nous voulons montrer dans ce travail est en premier lieu la confirmation que l’explosion de la bulle immobilière et le taux de prêts subprime sont bien les facteurs les plus importants, pour déterminer l’ampleur de la dépréciation des prix de vente de l’immobilier résidentiel sur le comté de Los Angeles (H1).

En deuxième lieu, nous souhaitons montrer que d’autres caractéristiques sont essentielles pour expliquer les variations de dépréciation entre les quartiers du comté. Après l’examen de la théorie, nous pensons que les caractéristiques ethniques sont des déterminants fondamentaux de la variation de la dépréciation du prix de vente de l’immobilier résidentiel lors de la crise des subprime (H2).

Enfin, nous souhaitons montrer que la qualité des variables environnementales locales ont une influence importante sur la dépréciation des prix, bien que n’étant pas les variables les plus déterminantes (H3).
3. Sources et méthodologie

3.1 Région d’étude

La Californie, cinquième puissance économique du monde, s'étire sur 1 250 kilomètres. Elle est bordée au nord par l'Oregon, à l'est par le Nevada et l'Arizona, à l'ouest par l'Océan Pacifique et au sud par le Mexique, avec 404 800 km², c'est le troisième Etat américain par sa superficie après l'Alaska et le Texas.

Los Angeles, sa capitale, est située au sud de la Californie, sur la côte pacifique. Aujourd'hui, son extension en forme de « tache d'huile » en a fait une agglomération qui s'étend sur plus de 200 kilomètres du Nord au Sud.

La population de la ville de Los Angeles est de 3'849'378 habitants en 2008, alors qu'elle n'était que de 11'500 en 1887. Le comté rassemble 10'179'716 d'habitants alors que l'aire urbaine de Los Angeles dans sa totalité compte plus de 20 millions d'habitants, ce qui en fait la deuxième agglomération des États-Unis après New York City.

Plus de 140 nationalités différentes sont représentées à Los Angeles, ce qui en fait une des villes les plus diversifiées ethniquement des Etats-Unis. La population hispanique est majoritaire et représente près de 45% de la population du comté. Suivent ensuite les populations blanches (33%), asiatiques (12%) et afro-américaines (9%).

D'un point de vue urbanistique Los Angeles se caractérise par l'absence d’un véritable centre-ville. Il s’agit d’une métropole polycentrique dont la densité de population est relativement faible, l’habitat individuel est très développé (70% de propriétaires sur le comté), ce qui favorise l’usage des transports individuels. Los Angeles est ainsi le nœud central d'un réseau d'autoroutes (« freeways ») très important, de plus de 1000 kilomètres dans toute l'agglomération.

5 US Census Bureau 2006
Le poids économique de l'agglomération de Los Angeles est extrêmement important. En 2002, le Produit National Brut de la métropole était de 411 milliards de dollars, soit une production de richesses supérieure aux Pays-Bas par exemple. Le PNB de l'agglomération représente plus de 3,3 % du PIB américain. L'industrie du cinéma, mais surtout le port de Long Beach, premier port du pays, jouent un rôle stratégique dans la croissance économique de la métropole. 14% du commerce international de marchandises des Etats-Unis transite par Long Beach.

Notre recherche s'effectue à l'échelle géographique du comté. A partir des données fournies par ESRI, un premier jeu de 290 Zip Codes a pu être établi couvrant pratiquement la totalité du comté. Après nettoyage, 249 Zip Codes ont pu être mis évidence (Figure 5).

Une deuxième échelle géographique a également été prise en compte, que nous avons nommée Exurban. Il s'agit du comté de Los Angeles, mais amputé de ses régions périurbaines, pour un total de 221 Zip Codes. Nous souhaitons, avec cette deuxième échelle d'analyse, contrôler l'influence des quartiers à faible densité se situant en périphérie, notamment au Nord du comté, et appliquer notre modèle sur un territoire entièrement urbain dont la taille des unités est relativement homogène.

L’échelle spatiale du quartier (Zip Code) a été choisie en fonction des données disponibles, notamment pour notre variable dépendante. L’échelle individuelle ou du block aurait été souhaitable, notamment pour une évaluation plus précise de l’influence des variables environnementales, mais il n’a pas été possible d’obtenir des données à ce niveau.

Figure 5. Echelles géographiques d’analyse
3.2 Données

Les données utilisées dans ce travail de recherche sont présentées dans la Table 1. Chaque variable y est décrite, classifiée et sa source y est explicitée. De plus, la relation que nous attendons ou supposons de chacune de nos variables avec notre variable dépendante, est décrite dans la dernière colonne du tableau. Dans ce travail, nous utilisons également le terme variable réponse pour désigner notre variable dépendante. Les termes variables explicatives et prédicteurs sont utilisés pour désigner nos variables indépendantes.

Toutes les cartes présentées dans cette recherche ont été réalisées par l’auteur.

Table 1. Description des variables

<table>
<thead>
<tr>
<th>Category</th>
<th>Variable</th>
<th>Description</th>
<th>Source</th>
<th>Expected Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable</td>
<td>Housing Price Depreciation</td>
<td>Index of 2007-2008 median single-family sales price change by Zip Code</td>
<td>Data Quick</td>
<td></td>
</tr>
<tr>
<td>Specific Variables related to the subprime crisis.</td>
<td>Subprime lending</td>
<td>First lien, owner-occupied loans originated in 2006 and five points or more above treasury rates per 10,000 homeowners</td>
<td>HMDA</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Foreclosures</td>
<td>September 2007 to August 2008 foreclosures rate per 10’000 homeowners</td>
<td>Data Quick</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Housing Price Appreciation</td>
<td>Index of 2000-2006 median single-family sales price</td>
<td>Data Quick and US census</td>
<td>Positive</td>
</tr>
<tr>
<td>Accessibility Variables</td>
<td>API score</td>
<td>2008 median elementary and high school API base score (range from 200 to 1000) by Zip Code</td>
<td>CA Dept. of Education</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Distance to Ocean</td>
<td>Distance to the Coast calculated as a proxy of air quality</td>
<td>Author</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Exurban</td>
<td>Zip Codes located in low density area</td>
<td>Author</td>
<td>Positive</td>
</tr>
<tr>
<td>Demographic Variables</td>
<td>Elderly Population</td>
<td>Percentage population more than 65 years old in 2008 by Zip Code</td>
<td>ESRI</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Diversity Index</td>
<td>Diversity Index ranges from 0 (no diversity) to 100 (complete diversity) by Zip Code in 2008</td>
<td>ESRI</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>White</td>
<td>Percentage of white population by Zip Code in 2008</td>
<td>ESRI</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Black</td>
<td>Percentage of black population by Zip Code in 2008</td>
<td>ESRI</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Latino</td>
<td>Percentage of Latino population by Zip Code in 2008</td>
<td>ESRI</td>
<td>Positive</td>
</tr>
<tr>
<td>Socio-Economic Variables</td>
<td>Population density</td>
<td>Density of population by Zip Code in 2008</td>
<td>ESRI</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Education level</td>
<td>Percentage of population more than 25 with a college degree or more by Zip Code in 2008</td>
<td>ESRI</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Income</td>
<td>Median income in 2008 by Zip Code</td>
<td>ESRI</td>
<td>Negative</td>
</tr>
<tr>
<td>Environment Variables</td>
<td>Public Green Zone</td>
<td>Public Park size per 10’000 Housing Units</td>
<td>UCLA Map Share</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Toxic Release Inventory</td>
<td>Hazardous toxic air release per 10’000 Housing Units</td>
<td>Environmental Protection Agency</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Noise and air Pollution</td>
<td>Buffer Zone around Major Roads, Highways and Rail roads per the size of each Zip Code</td>
<td>UCLA Map Share and Author</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Quality of Environment Index</td>
<td>Index from 1 (very bad) to 5 (very good) of all the 4 variables aforementioned</td>
<td>Author</td>
<td>Negative</td>
</tr>
</tbody>
</table>
3.2.1 Variable Dépendante

La variable dépendante, la dépréciation du prix de vente de l’immobilier résidentiel sur le comté de Los Angeles, provient de la base de données immobilière Data Quick. La valeur du prix moyen de vente de l’immobilier résidentiel est mesurée en moyenne pour chaque Zip Code du comté de Los Angeles. A partir de ce jeu de données, la dépréciation du prix de vente est calculée par le pourcentage de différence de prix de vente entre 2006 et 2008 pour chaque Zip Code.

Un total de 249 Zip Code a ainsi pu être inclus pour notre analyse. La dépréciation du prix moyen de vente de l’immobilier résidentiel varie de 0 à 58 pour cent, avec une moyenne de 25 pour cent. 25 Zip Code font au contraire face à une appréciation du prix de vente moyen pendant cette période de 28% pour le plus élevé. Le logarithme naturel de la dépréciation du prix de vente est souvent utilisé dans la littérature scientifique afin de rapprocher la distribution de la variable dépendante de la normalité.

Dans notre cas, la Figure 6 de la distribution de notre variables dépendante, montre qu’elle se rapproche d’une distribution normale. Le test de normalité Kolmogorov-Smirnov confirme cette appréciation (p-value = 0.0057). Il n’est donc pas nécessaire d’effectuer une transformation de notre variable réponse.

La variable dépendante a été choisie en fonction de notre problématique. En effet, la magnitude et la variation de la crise des subprime se perçoivent aisément dans le déclin du prix de vente de l’immobilier résidentiel (Figure 7, Hammel 2008). En avril 2008, le prix de vente médian des maisons avait baissé de 27% par rapport à son taux en 2007 (Data Quick 2008).

De plus, peu d’études se sont penché sur les déterminants de la dépréciation des prix de vente de l’immobilier résidentiel, alors que la valeur de ce type d’actifs, qui se compte en milliard de dollars, en fait un actif financier important qui est, par ailleurs, souvent le seul actif de valeur détenu par la plupart des ménages (Sheppard 1997, Zabel 1999).

6 Voir chapitre Conclusion de la crise des subprime
Le prix de vente a été utilisé comme indicateur conformément aux indications de Palmquist (2005), car il capitalise la valeur des services futurs fournis par la maison. A ce titre, si un changement est attendu, par exemple dans les conditions environnementales locales, cette attente sera normalement reflétée dans le prix de vente.

Figure 7. Variation du taux de dépréciation (HPD), Comté de Los Angeles

3.2.2 Variables structurelles

Les variables structurelles, liées à la spécificité du bâtiment (taille et nombre de pièces, taille du terrain), sont considérées comme un des principaux déterminantes du prix de l’immobilier résidentiel dans les analyse hédoniques (Bateman 2002). Pour des raisons de disponibilité des données à notre échelle d’étude, elles sont absentes de notre travail.
3.2.3 Variables spécifiques à la crise

Suite à l’examen théorique des déterminants de la crise immobilière, une catégorie spécifique de variables explicatives a été crée afin d’en capturer, dans un premier temps, l’influence, et d’être capable, dans un deuxième temps, de déterminer le pouvoir explicatif de nos autres groupes de variables. L’explosion de la bulle immobilière de 2000 à 2006, ainsi que la transformation du système bancaire américain, qui a permis la croissance des prêts à hauts risques sont les causes principales identifiées de la crise des subprime (Dymski 2007, 2008, Wyly 2008, Gerardi 2008 notamment). Partant de ce constat, nous avons mis en place deux indicateurs, qui nous permettrons de répondre à la première hypothèse de ce travail.

Le taux d’appréciation moyen du prix de vente de l’immobilier résidentiel sur le comté de Los Angeles, durant la période de 2000 à 2006, a été choisi à titre de proxy à la bulle immobilière. Suivant la méthode employée par Ong et Pfeiffer (2008), le taux d’appréciation est calculé à partir du prix moyen de vente de l’année 2000, identifiée comme l’année de base de la bulle. Ces données proviennent de la base de données immobilière développée par Data Quick. L’appréciation du prix de vente moyen de l’immobilier résidentiel se situe dans une fourchette large de 22 à 442 pour cent pour les Zip Code à l’appréciation la plus élevée, avec une moyenne de 170 pour cent durant les 6 années. Ces valeurs observées capturent les changements les plus importants de prix, bien que pour certains quartiers le prix de vente n’ait atteint son pic qu’à la fin 2007.

La mesure des prêts subprime par 10'000 propriétaires de maisons a été choisi comme deuxième indicateur. Elle provient de la base de données étatique de 2006 HMDA (Home Mortgage Disclosure Act). Suivant Ong et Pfeiffer (2008), seulement les prêts conclus en 2006 et 5 points ou plus que les taux du trésor américain sont pris en compte, une estimation plus conservative que celle de la réserve fédérale qui considère comme prêts à forts coûts (high cost loans) les prêts conclus à 3 points de plus que les taux du trésor américain. Nous espérons ainsi identifier la catégorie de prêts rapaces, qui ont le plus de probabilité de se terminer en défaut de paiement. Ces données sont rapportées à l’échelle du census tract par le HMDA. Nous avons ensuite agrégé ces données au Zip Code pour tout le comté de Los Angeles.

7 Voir Figure 3 de ce travail
Un troisième indicateur a également été inclus dans cette catégorie de variables. Il s’agit du nombre de saisies de maisons (« foreclosure ») par 10'000 propriétaires entre septembre 2007 et août 2008.

Nous nous attendons à ce que les quartiers qui ont vu le prix de l’immobilier résidentiel s’apprécier très fortement entre 2000 et 2006 et qui ont un taux de prêts subprime et de saisies de maisons élevés soient plus fortement touchés par la dépréciation du prix de vente des maisons entre 2006 et 2008.

L’examen cartographique (Figure 8 à 10) laisse entrevoir des structures spatiales dans la variation des ces trois variables. Le taux de prêts subprime et le taux d’appréciation sont particulièrement élevés dans les régions de périphérie, au Nord vers Palmdale et Lancaster. La vallée de San Fernando connaît des taux élevés ainsi que le centre de Los Angeles vers Compton, Inglewood et Downey. A l’opposé, la région côtière de Malibu à Palos Verdes présente des taux plus faibles. A l’exception des régions du Nord, une structure centre-périphérie est identifiable pour nos trois variables. Deux enclaves en périphérie présentent des taux élevé. Il s’agit de Pomona au sud-est et Long Beach au sud où est situé le plus grand port de Californie.
Sources et Méthodologie

Figure 8. Variation du taux de prêts subprime

Figure 9 Variation du taux d’appréciation (HPA)
3.2.4 Variables d’accessibilité

La deuxième catégorie de variables comprend les variables d’accessibilité liées à un quartier. Ces variables définissent la facilité (en termes de distance8) avec laquelle on atteint les aménagements et équipements publics (commerce, école, loisirs, transport public, centre ville, parcs), depuis sa propriété. Une variable factice est utilisée pour contrôler si le Zip Code est situé dans la partie nord du comté de Los Angeles, suivant la technique utilisée par Ong et Pfeiffer (2008). Ces quartiers périurbains sont en effet associés à la spéculation immobilière et sont également plus vulnérables à une baisse de la demande immobilière, en raison de leur situation excentrée. Nous nous attendons donc à ce qu’ils subissent une plus forte dépréciation du prix de vente, que la moyenne. Ils sont également plus grands en taille et moins densément peuplés que la moyenne des Zip Codes du comté de Los Angeles, ce qui peut provoquer un biais dans notre analyse.

8 Nous considérons l’accessibilité en termes de distance et non en temps de parcours, en raison de la relative facilité d’accès en transports individuels de la plupart des équipements publics sur le comté.

Enfin, en raison de la proximité du comté à l’Océan, nous avons construit un indicateur reflétant la distance du centroid de chacun de nos Zip Codes à l’océan (l’océan est défini cartographiquement par la création d’une ligne suivant la côte sur Arc Map). C’est assez logiquement que nous pensons que les quartiers plus proches de l’océan soient également les plus désirés. De plus, ils bénéficient d’une qualité d’air supérieure aux quartiers plus éloignés en raison de la géographie en cuvette du comté de Los Angeles et de l’orientation Sud Ouest-Nord Est du vent, qui pousse la pollution de l’océan vers l’arrière pays.9

Nous nous attendons à ce que les Zip Codes, qui ont des équipements publics de qualité et qui sont proches de l’océan, aient une demande immobilière élevée qui leur permettent d’être ainsi plus résistant à une dépréciation globale du prix de vente de l’immobilier résidentiel.

Les variables d’accessibilité comprennent généralement une mesure de la distance du quartier au centre des affaires. Il s’agit généralement du centre d’emploi le plus important et à ce titre, il est préférable pour beaucoup d’individus de vivre à proximité pour éviter les coûts de déplacement. Cet indicateur se base sur l’hypothèse implicite que la ville que nous analysons est monocentrique (Dubin 1991). Dès lors que Los Angeles n’a pas de vrai centre des affaires (Brasington et Hite 2003), un indicateur de distance travail-emploi peut être utilisé en remplacement (Firestine 2009). Nous n’avons malheureusement pas pu avoir accès à ce type de données. En lieu et place, la distance à l’océan est considérée comme une variable particulièrement importante dans le choix de l’achat d’une maison à Los Angeles (Beron et al. 2001, Saphores et Benitez 2005). C’est pourquoi nous utilisons cet indicateur, comme une variable d’accessibilité. La qualité des écoles avoisinantes (Li 1980, Thayer et al. 1985, Goodman et Thibodeau 1998, Arguea et Hsiao 2000, Saphores et Benitez 2005, notamment) complète cette catégorie de variable.

9 Voir chapitre 5.3.3 sur la discussion de l’ACP
Géographiquement (Figure 11 et 12), la carte des résultats des écoles au test scolaire se rapproche de celles des variables liées à la crise, avec trois régions aux résultats faibles : Lancaster et Palmdale au Nord, San Fernando Vallée à l’Ouest et Compton, Long Beach au Centre. Les régions côtières et Pasadena obtiennent globalement de meilleurs résultats.

Figure 11. Variation des résultats du test scolaire API
3.2.5 Variables de quartier

Les indicateurs socio-économiques choisis pour cette recherche sont le pourcentage de la population de plus de 25 ans ayant un college degree (niveau bachelor) ou un degré supérieur, le salaire médian moyenné au niveau du Zip Code, ainsi que la densité de population au mile carré, pour chaque Zip Code. Il s’agit de données brutes du Recensement de 2000 actualisées par ESRI pour l’année 2008. Nous nous attendons à ce qu’un quartier avec un fort pourcentage de population avec un niveau d’éducation au moins équivalent au bachelor, un salaire moyen plus élevé que la moyenne, ainsi qu’une densité de population faible, fasse face à une dépréciation de prix de vente des maisons moins élevées que la moyenne.

Figure 12. Variation de la distance à l’océan
Les variables démographiques et ethniques incluent le pourcentage de la population de plus de 65 ans, le pourcentage d’afro-américains, d’hispaniques (« latinos ») et de blancs par Zip Code, ainsi qu’un index de diversité allant de 0 (l’entière population appartient à un groupe ethnique) à 100 (la population est également distribuée entre les différents groupe ethniques qui la compose). L’index de diversité représente la probabilité que deux personnes tirées au hasard dans un même quartier, appartiennent à différentes races ou groupes ethniques. Nous nous attendons à ce que le pourcentage de personnes âgées soit un indicateur de stabilité pour le quartier et que les quartiers au pourcentage d’hispanique et d’afro-américain élevés soient plus frappés par la crise que la moyenne.

L’examen cartographique montre que les plus forts taux de population âgée se trouvent géographiquement du côté de Santa Monica, Palos Verdes, Pasadena et en partie dans la vallée de San Fernando (Figure 13). A l’exception de cette dernière, il s’agit également des quartiers les plus cossus du comté. Sans surprise, les régions au Nord, au développement urbain récent, comptent une proportion plus faible de population âgée.

L’index de diversité (Figure 14) est spécialement élevé dans les régions du centre, de Long Beach jusqu’à la ville de Los Angeles où les populations semblent beaucoup se mélanger. La région de Malibu à Santa Monica et celle de Santa Clarita sont, en comparaison beaucoup plus homogènes ethniquement.

Des structures spatiales claires semblent se dessiner au niveau ethnique. La distribution spatiale du pourcentage de population blanche et hispanique par quartier (Figure 15 et 16) est symétriquement à l’opposé. La population hispanique se concentre dans la vallée de San Fernando, au nord-est de Downey à Azusa et vers Pomona entre les comtés d’Orange et San Bernardino. Au contraire, la population blanche est largement majoritaire dans les régions
côtiers, principalement de Santa Monica à Malibu, ainsi que dans la région de Santa Clarita. La population afro-américaine, elle, se concentre principalement dans les quartiers du centre de Los Angeles entre Inglewood et Compton.

Au niveau socio-économique, sans surprise, la densité de population (Figure 17) suit une logique centre-périphérie. Les quartiers de Los Angeles, Compton, Inglewood et Downey ont la densité de population la plus élevée.

La symétrie spatiale du niveau d’éducation et du niveau de revenu moyen est presque parfaite (Figure 15 et 16). A nouveau, l’examen des cartes laisse percevoir une structure spatiale forte avec un centre (De Long Beach à Azusa) au niveau d’éducation et au niveau de revenu peu élevé et une périphérie où se concentre une population plus riche, au niveau d’éducation élevé. Les régions de Pasadena, de Palos Verdes et la côte de Santa Monica à Malibu sont géographiquement les plus riches.
Figure 13. Variation du pourcentage de population de plus de 65 ans

Figure 14. Variation de l’index de diversité
Sources et Méthodologie

Figure 15. Variation du pourcentage de population blanche

Figure 16. Variation du pourcentage de population hispanique
Figure 17. Variation du pourcentage de population afro-américaine

Figure 18. Variation de la densité de population au mile carré
Figure 19. Variation du pourcentage de population avec au moins un degré du collège

Figure 20. Variation du niveau de revenu médian
3.2.6 Variables environnementales

Enfin, notre dernier jeu de données rend compte des variables environnementales locales. La qualité de l’air, la pollution de bruit, les espaces verts, la vue, la présence de sites toxiques sont régulièrement cités comme variables environnementales locales (Ridker 1977, Li et Brown 1980, Thayer 1985, Murdoch 1988, Smith 1995, Anselin 2006, Bayer 2006). Les indicateurs environnementaux ne sont pas toujours quantifiables et sont sujet à la perception individuelle qui varie entre individus (Zabel 2000, Hartley 2005, Baranzini et al. 2006). De ce point de vue, il est important d’utiliser des variables que l’acheteur de maison peut percevoir. Concernant la qualité de l’air, les stations de mesure du South Coast Air Quality Management District, qui s’occupe de la gestion de la qualité de l’air pour les districts du Sud de la Californie, dont Los Angeles, ne sont pas assez nombreuses sur le comté pour utiliser les relevés de façon statistiquement significative.

La première de nos variables est un indicateur de densité des espaces verts publics. Conforme à Marans (2003), nous considérons la proximité d’un parc urbain dans le quartier comme une variable environnementale plutôt qu’une variable d’accessibilité à un équipement public. Les parcs publics de Los Angeles ont été rassemblés à l’intérieur d’un dossier qui nous été fournis par Map Share de l’Université de los Angeles Californie. A l’aide des outils GIS d’Arc Map, l’aire en kilomètre carré de chaque parc a été calculée pour chaque quartier. Comme chaque Zip Code se différencie par sa taille, nous avons pondéré ce chiffre par le nombre d’unité de logement par Zip Code.

Ces zones ont été créées conformément aux recommandations du Département à l’environnement de l’Etat de Californie confirmée par la littérature scientifique (Houston 2006, Hu 2009 et Kozawa 2009), soit 600m de chaque côté des autoroutes et 150m de chaque côté des artères principales et du rail. Elles représentent les zones de sensibilité autour de ce type d’axe de transport.
Ces zones ont été calculées pour chacun de nos Zip Code et on ensuite été pondérées par le nombre d’unités de maison.

Nous espérons ainsi capturer les externalités négatives (pollution atmosphérique et bruit) et positives (moins de distance de trajet) liées à une telle proximité (Li et Brown 1980). L’examen statistique de cette variable a montré un coefficient positif en relation avec la dépréciation de prix. Plus la densité du réseau de transport est importante dans le quartier, plus la dépréciation du prix de vente moyen des maisons est élevée. Les externalités négatives associées à cet indicateur semblent donc supérieures, sur le comté de Los Angeles, aux externalités positives.

Enfin, afin de mieux percevoir l’influence de nos variables environnementales locales, nous avons également décidé de créer un index de qualité environnementale pour chaque quartier.

La création d’un index environnemental suggéré par Anselin et Le Gallo (2006), devrait nous permettre de mieux visualiser l’influence globale des variables environnementales sur la dépréciation du prix de vente des maisons.

Il est construit à partir de trois de nos indicateurs : la densité d’espaces verts publics, la densité du réseau principal de transport, ainsi que la distance à l’océan de chacun de nos quartiers. Le niveau d’émisipon toxiques rejeté dans l’air est également pris en compte. Les trois premiers indicateurs sont classés de 1 (très mauvais) à 10 (très bon) selon un intervalle géométrique. Les émissions toxiques atmosphériques10 sont prises en compte dans un intervalle de 1 à 5 suivant la quantité des émissions. Cette pondération s’explique par le caractère local de ces émissions difficilement agrégeable à l’échelle du quartier. L’intervalle géométrique a été choisi comme fonction de classement, car il permet une bonne visualisation cartographique et un nombre suffisant de variables dans chaque intervalle.

La présence de la distance à l’océan dans notre indicateur se justifie pour deux raisons : premièrement nous considérons l’accès à la plage, comme l’accès à un bien environnemental public, au même titre que les espaces verts. Deuxièmement, la topographie et la direction des

10 Ibid.
vents sur le comté de Los Angeles rend la relation entre distance à l’océan et pollution atmosphérique relativement linéaire (Saphores et Benitez 2005, Figure 30).
L’examen cartographique révèle des difficultés à mettre en évidence des structures spatiales claires dans la variation de la densité du réseau de transport (Figure 23). Les régions de périphérie ont de manière générale une densité de réseau élevée. À l’opposé, les régions du nord est (Los Angeles, Downey), ainsi que la région du port de Long Beach jusqu’à Compton, ont une plus forte densité de réseau de transport que le reste du comté.
La densité des espaces verts publics est plus forte dans les régions plus sauvages du nord ouest ainsi que le long de la côte de Santa Monica à Malibu. Le nord est de Pasadena à Pomona semble également avoir une densité élevée d’espaces verts publics.

La carte de l’index environnemental (Figure 21) laisse entrevoir une structure spatiale plus claire. Les régions au Nord, la côte de Santa Monica à Malibu, Palos Verdes et la région de Pasadena sont les régions à la qualité environnementale la meilleure dans notre test. La structure centre périphérie aperçue pour les variables socio-économiques ressort également de l’examen géographique de l’index environnemental.
Figure 21. Variation de l’index environnemental
Figure 22. Variation de la densité des espaces verts publics

Figure 23. Variation de la densité des artères principales de transport
3.3 Méthode
Afin de répondre aux hypothèses posées, ainsi qu’à la problématique, notre méthodologie est avant tout quantitative, dans la mesure où nous allons essayer d’obtenir des proportions relatives (entre nos cinq catégories de variables) pour évaluer l’influence respective de ces variables et non leur valeur absolue.

Dans un premier temps, l’influence de l’explosion de la bulle immobilière et des prêts subprime sur la dépréciation des prix de l’immobilier résidentiel est évaluée, afin d’en mesurer l’importance (réponse à H1).

Dans un deuxième temps, toutes les variables sont englobées dans la relation, et l’importance relative de chacun de nos indicateurs est mesurée, afin de déterminer quelles sont les principales caractéristiques qui expliquent les variations de dépréciation entre les quartiers (réponse à H2).

Enfin, un modèle prédictif est créé à partir des variables au potentiel relatif le plus important, afin de percevoir quelle est l’influence des variables environnementales locales dans la dépréciation du prix de l’immobilier résidentiel sur les quartiers du comté de Los Angeles (réponse à H3).

3.3.1 Modèles statistiques

Traditionnellement la régression des moindres carrés (OLS) a été utilisée lors des modélisations hédoniques (Sheppard 1997, Neill 2007). La méthode des moindres carrés ordinaires (MCO) ou ordinary least square (OLS) en anglais, est la méthode la plus classique et la plus simple de la modélisation statistique qui permet de calculer la droite de régression la plus proche des points d’estimations. La méthode consiste à minimiser la distance verticale entre les points et la droite d’ajustement, c'est-à-dire à minimiser les écarts entre la valeur observée et la valeur prédite pour tous les points. Afin d’effectuer cette opération, on prend en compte la somme des distances au carré entre les points et la droite. Cette méthode a l’avantage de s’appliquer à un large jeu de données. Elle ne
rend cependant pas compte des problèmes de dépendance spatiale et ne permet pas d’obtenir différentes formes de courbe de réponse autre que linéaires.

Le Generalized Additive Model (GAM) est une extension non paramétrique des Generalized Linear Model (GLM), qui sont eux mêmes une généralisation de la méthode classique des moindres carrés. Alors que les GLMs étendent l’application de la régression classique à d’autres distributions statistiques telle que la distribution binomiale, la distribution poisson ou la distribution gamma, les GAMs estiment la courbe de réponse avec une fonction de lissage non paramétrique. Ceci permet d’obtenir différentes formes de courbe de réponse et des résultats plus fins, plus proches de la réalité. Les GAMs sont donc une extension non paramétrique des GLMs, ce qui permet l’introduction de réponses non linéaires dans les prédicteurs et la réponse. Un estimateur non paramétrique est aussi plus amène de gérer des observations erronées (Pace 1993). Ces modèles permettent d’obtenir des relations plus précises entre les variables, c’est pourquoi nous les avons utilisés dans notre recherche (Neill et al. 2007, Small et Steimetz 2007, Anselin 2008, Taylor 2008). À notre connaissance ce type de modèle est très peu utilisé dans les sciences sociales. Geniaux et Napoléone (2008), fournissent un bon aperçu des possibilités de ce type de modèle dans les analyse hédoniques.

L’outil GRASP (Generalized Regression Analysis and Spatial Prediction), développé notamment par Anthony Lehmann (Lehmann et al. 2003), permet l’utilisation des GAM sous Splus. Développé à la base comme outil d’analyse en écologie, il permet de standardiser le processus de modélisation au travers d’un outil simple d’utilisation, qui utilise les modèles statistiques afin de produire des prédictions spatiales. Le modèle sélectionne une relation entre une variable dépendante et un jeu de prédicteurs spatiaux, afin d’obtenir le meilleur modèle statistique possible de la variation du taux de dépréciation du prix de vente des maison entre les quartiers du comté de Los Angeles. GRASP utilise ensuite ce modèle pour prédire la variation de la dépréciation dans l’espace géographique considéré, soit le comté de Los Angeles.
3.3.2 Plan d’analyse

Avant de réussir à former un modèle prédictif des variations de dépréciation des valeurs immobilières du comté de Los Angeles, plusieurs étapes antérieures sont nécessaires.

En premier lieu, la relation de chacune de nos variables prise indépendamment avec notre variable dépendante est examinée (analyse bivariée), afin d’obtenir une première impression de notre jeu de données. Ensuite, le pouvoir explicatif des variables spécifiques à la crise est mesuré afin de répondre à l’hypothèse H1.

Dans un deuxième temps, la distribution de toutes nos variables est examinée afin de valider le choix du modèle statistique (analyse multivariée). Les variables, dans leur ensemble, passent à l’examen des corrélations et sont ensuite ordonnées (ACP), afin de favoriser la sélection d’un nombre limité de variables représentatives pour notre modèle prédictif.

Enfin, la régression stepwise sélectionnera le meilleur modèle possible, qui pourra répondre à l’hypothèse H2. Le modèle sera ensuite validé et interprété à l’aide des outils statistiques GRASP. Suivant sa validité des prédictions spatiales à partir des variables environnementales pourront être possibles, nous permettant de vérifier notre troisième hypothèse H3.
4. Présentation des Résultats

4.1 Analyse Bivariée

La première partie de notre analyse consiste à examiner l’influence de chacune de nos variables explicatives, prise séparément, sur notre variable dépendante.

4.1.1 Examen spatial de la variable dépendante

L’examen géographique de la variable dépendante nous permet de se faire une première idée des structures spatiales la dirigeant. La variation du taux de dépréciation du prix de vente moyen de l’immobilier résidentiel est classée en quatre catégories selon son intensité :

1. Zip Codes avec une dépréciation de moins de 5%
2. Zip Codes avec une dépréciation de 5 à 20%
3. Zip Codes avec une dépréciation de 20 à 30%
4. Zip Codes avec une dépréciation de plus de 30%

La première catégorie, qui représente une minorité de quartier (28 sur 249), comprend également les Zip Codes qui ont vu le prix de vente moyen de l’immobilier résidentiel s’apprécier entre 2000 et 2006.

La variation du taux de dépréciation entre quartiers ne se répartit pas de manière aléatoire (Figure 24), des structures spatiales sont visibles. Ces structures ressemblent fortement à celles aperçues pour les variables liées à la crise (Figure 8 et 9), les variables économiques (Figure 19 et 20) et nos variables ethniques (Figure 14 à 16). On distingue ainsi deux types de structure spatiales différentes : une structure centre-périphérie pour les quartiers en milieu entièrement urbain et une structure spécifique propre aux quartiers se situant en périphérie nord du comté, après la vallée de San Fernando, très fortement touché par la dépréciation.

En partant du centre, à l’exception du port de Long Beach, le taux de dépréciation décroît au fur et à mesure que l’on se rapproche de l’océan. Au Nord, plus on se rapproche de Pasadena plus le taux décroit, à l’exception des poches de Pomona et Azusa. Au nord ouest, une rupture est visible à partir de la vallée de San Fernando, jusque dans les régions de périphérie à l’extrême nord du comté (Palmdale, Lancaster) qui sont particulièrement touchées par la crise.
La présence de structures spatiales claires démontre que les variations du taux de dépréciation ne se répartissent pas de façon aléatoire sur le comté, mais qu’elles sont au contraire guidées par certaines forces qu’il s’agit d’identifier.

Figure 24. Variation du taux de dépréciation (HPD) en catégories

4.1.2 Examen du potentiel explicatif des variables explicatives

Pour l’examen du potentiel explicatif, chacun de nos prédicteurs est régressé séparément sur notre variable réponse. L’analyse bivariée se fait à l’aide d’une régression ordinaire des moindres carrés (OLS), à l’échelle du comté et à l’échelle Exurban. Les résultats sont visibles en Table 2. En raison du relatif faible nombre d’observations, nous avons utilisé un niveau de significativité de 10% (les relations non significatives ont été soulignées en gras).
Présentation des Résultats

A l’exception du taux de densité de population, et de la densité du réseau de transport principal, toutes nos variables sont significatives à 10% et 5%. Ces deux types de densité souffrent, à l’échelle du comté, de la présence de nombreux Zip Codes densément faible au taux de dépréciation élevé, comme le montre leur significativité à l’échelle Exurban (p=0.017 pour la densité).

Le coefficient de corrélation se révèle positif, conformément à nos attentes, ce qui tend à indiquer que plus l’aire d’analyse a une densité de population élevée plus la chance qu’elle fasse face à un taux de dépréciation élevé du prix moyen de vente des maisons est grande.

Le taux de prêts subprime, le niveau d’éducation, le taux de saisies et le pourcentage de population d’origine hispanique, sont, dans l’ordre, les variables au plus fort potentiel explicatif. A l’opposé, le taux de densité, le pourcentage de population afro-américaine, la densité des artères de transport principales et la distance à l’océan sont les variables explicatives au plus faible potentiel explicatif de notre jeu de données. Ces résultats sont cependant à prendre avec prudence, car ils ne rendent pas compte du niveau de corrélation, ni de la contribution relative de nos variables dans un modèle multivarié.

Cependant, plusieurs constats généraux peuvent être tirés. Les variables liées à la crise sont corréllées positivement à notre variable dépendante et ont toutes un R carré supérieur à celui de la moyenne générale de nos variables. Le taux de prêts subprime par quartier est la variable la plus corrélée de ce groupe. Comme attendu, le pouvoir explicatif des prêts subprime et de l’appréciation du prix moyen de vente de l’immobilier résidentiel baisse lorsque l’on contrôle pour les quartiers à la périphérie nord du comté. Cela confirme que ces zones sont particulièrement sensibles à ces deux variables. D’une manière générale, le pouvoir explicatif de l’ensemble des autres variables indépendantes augmente en milieu entièrement urbain.

Les variables démographiques et ethniques sont toutes pertinentes. L’index de diversité et le pourcentage de la population hispanique en tête, ces variables, à l’exception du pourcentage d’afro-américain (0.081), ont toutes un R² élevé. Cette tendance est la plus marquée pour le taux d’hispaniques, avec un R² important de 0.376 et une corrélation positive au taux de dépréciation.

Le taux de dépréciation est fortement corrélé négativement au niveau moyen de revenu et au niveau d’éducation. Avec un R² de 0.463, cette dernière variable est de loin la variable indépendante au plus fort potentiel explicatif de notre jeu d’indicateur.
Présentation des Résultats

Deux de nos trois variables environnementales sont significatives et présentent des coefficients de corrélation conforme à nos attentes. Le R^2 est cependant assez faible, nettement en dessous de la moyenne générale. Sans surprise, l’index environnemental a le R^2 le plus élevé (0.066), suivi par notre variable de densité des espaces verts publics (0.047).

Contrôlé de ses éléments périurbains, cette variable perd cependant de l’importance au profit des autres variables et de notre index environnemental, qui augmente son potentiel explicatif, passant à un R^2 de 0.105. L’explication provient très certainement du fait que les éléments périurbains écartés de notre analyse ont une densité de population plus faible qui est due notamment à la forte présence d’espaces verts publics.

Cette première étape de notre analyse ne rend cependant pas compte de la distribution de nos variables, des effets de corrélation, du pouvoir explicatif relatif, ni de l’influence des variables environnementales locales, au travers de leur association aux autres catégories de variables. Pour isoler ces effets indépendants et mesurer la contribution relative de chacun de nos prédicteurs, les méthodes d’analyse multivariée sont requises.

Table 2. Analyse Bivariée OLS

<table>
<thead>
<tr>
<th></th>
<th>HPD 2006-2008</th>
<th>County (249 ZipCodes)</th>
<th>Exurban Control (221 ZipCodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Rsquare pvalue Coefficient</td>
<td>Rsquare pvalue Coefficient</td>
</tr>
<tr>
<td>1</td>
<td>Foreclosure</td>
<td>0.421 0.651</td>
<td>0.429 0.655</td>
</tr>
<tr>
<td></td>
<td>SubprimeLoan</td>
<td>0.542 0.736</td>
<td>0.51 0.714</td>
</tr>
<tr>
<td></td>
<td>HPA 2000-2006</td>
<td>0.349 0.591</td>
<td>0.342 0.585</td>
</tr>
<tr>
<td>2</td>
<td>API Base 2008</td>
<td>0.371 0.609</td>
<td>0.388 0.623</td>
</tr>
<tr>
<td></td>
<td>Distance to Ocean</td>
<td>0.09 0.299</td>
<td>0.012 0.099 0.111</td>
</tr>
<tr>
<td></td>
<td>Exurban</td>
<td>0.016 0.046 0.126</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PcentPop65</td>
<td>0.17 0.413</td>
<td>0.174 0.417</td>
</tr>
<tr>
<td></td>
<td>Diversity Index</td>
<td>0.325 0.57</td>
<td>0.36 0.6</td>
</tr>
<tr>
<td></td>
<td>Pcent White</td>
<td>0.28 0.529</td>
<td>0.363 0.602</td>
</tr>
<tr>
<td></td>
<td>Pcent Black</td>
<td>0.081 0.285</td>
<td>0.083 0.287</td>
</tr>
<tr>
<td></td>
<td>Pcent Hispa</td>
<td>0.375 0.613</td>
<td>0.448 0.669</td>
</tr>
<tr>
<td>4</td>
<td>PcentCollegeDegree</td>
<td>0.463 0.681</td>
<td>0.517 0.719</td>
</tr>
<tr>
<td></td>
<td>PopDensity</td>
<td>0.007 0.187 0.084</td>
<td>0.026 0.017 0.16</td>
</tr>
<tr>
<td></td>
<td>Median Income</td>
<td>0.277 0.526</td>
<td>0.305 0.553</td>
</tr>
<tr>
<td>5</td>
<td>Road Ways Density</td>
<td>0.01 0.109</td>
<td>0.036 0.005 0.19</td>
</tr>
<tr>
<td></td>
<td>GreenZone Density</td>
<td>0.047 0.001 0.218</td>
<td>0.024 0.023 0.153</td>
</tr>
<tr>
<td></td>
<td>Envi Index</td>
<td>0.066 0.257</td>
<td>0.105 0.325</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>0.24212 0.04363</td>
<td>0.25762 0.0361875</td>
</tr>
</tbody>
</table>

HPD = Housing Price Depreciation; HPA = Housing Price Apreciation
4.2 Analyse Multivariée

4.2.1 Introduction
Le but d’une analyse multivariée est de réduire le nombre de dimensions du jeu de données, qui est composé d’une quantité de variables trop grandes pour être appréhender par l’analyste. De plus, les variables explicatives ne sont jamais totalement indépendantes les une des autres, il existe toujours un certain degré de corrélation entre elles. L’analyse multivariée permet de séparer les effets de nos variables explicatives sur notre variable dépendante. Ainsi, les analyses multivariées tentent d’extraire l’information utile afin d’aider le chercheur à interpréter ses résultats tout en tirant partie des effets combinés de plusieurs variables.

4.2.2 Régression des variables spécifiques à la crise (Hypothèse H1)
La première partie de l’analyse examine uniquement l’importance des prédicteurs identifié par la littérature scientifique comme étant les déterminants les plus importants dans l’explication des variations de la dépréciation des valeurs immobilières sur le comté de Los Angeles (Hypothèse H1). Il s’agit du taux d’appréciation entre 2000 et 2006 et du taux de prêts subprime.

Cette analyse est effectuée par une régression Two least square (2SLS). La 2SLS est une extension de l’OLS (Ordinary Least Square), qui est utilisée lorsque les termes d’erreurs de la variable dépendante sont corrélés à ceux des variables indépendantes, ce qui constitue une violation d’une hypothèse de base de la régression des moindres carrés (Anselin et Lozano – Garcia 2008).

Les résultats de la régression de la première partie de notre analyse sont visibles en Table 3. De manière évidente, le taux de prêts subprime et le taux d’appréciation du prix de vente moyen des maisons sont fortement et positivement corrélé au taux de dépréciation. Ces deux variables expliquent pour plus de la moitié (R carré ajusté de 0.583) de la variation du taux de dépréciation entre les différents quartiers de Los Angeles. Si la variation de la bulle immobilière rend compte de la variation du taux de dépréciation, elle reste un facteur près de deux fois moins important que le taux de prêts subprime. Les résultats sont semblables à l’échelle géographique Exurban. Le R^2 ajusté est cependant légèrement inférieur à celui du comté (0.558), ce qui s’explique par l’exclusion des régions situées à la périphérie nord, dont les taux d’appréciation et de prêts subprime sont particulièrement élevés.
Présentation des Résultats

Table 3. Régression multivariée (2SLS), Hypothèse 1

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.765*</td>
<td>.586</td>
<td>.583</td>
<td>9.767</td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), Sub2006, HPA

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-1.088</td>
<td>2.064</td>
<td>-.527</td>
</tr>
<tr>
<td></td>
<td>HPA</td>
<td>.070</td>
<td>.014</td>
<td>.254</td>
</tr>
<tr>
<td></td>
<td>Sub2006</td>
<td>.181</td>
<td>.015</td>
<td>.592</td>
</tr>
</tbody>
</table>

a. Dependent Variable: HPD

4.2.3 Examen de la distribution des variables explicatives

La deuxième partie de notre analyse procède à l’examen des variables explicatives prises dans leur globalité. Il s’agit de déterminer si d’autres variables, et spécifiquement les variables ethniques, sont significativement déterminantes à l’explication de la variation du taux de dépréciation entre les quartiers du comté de Los Angeles (Hypothèse H2).

Avant de commencer l’analyse à proprement parlé, il convient d’étudier la distribution de nos variables. En effet, pour calculer empiriquement la droite de régression la plus proche de nos estimations, on utilise en général la méthode des moindres carrés ordinaires (OLS). La forme linéaire n’est cependant pas forcément toujours la mieux adaptée aux estimations, c’est pourquoi il est important d’examiner graphiquement la forme des relations que nous souhaitons modéliser. Cet examen est essentiel dans la détermination du type de méthode statistique que l’on souhaite ensuite appliquer.

L’examen de la distribution de nos variables explicatives (Figure 25) met en évidence différents types de relations. Le niveau d’éducation, le pourcentage de la population d’origine hispanique ou le pourcentage de population blanche semble suivre une relation linéaire avec notre variable dépendante. Ce n’est cependant pas le cas de la majeure partie de nos variables explicatives, qui ont des relations particulières.
Présentation des Résultats

C’est pourquoi, l’utilisation de modèle non paramétrique, tel que les GAM, se justifie. En effet, si les GLMs étendent l’application de la régression classique à d’autres distributions statistiques tel que la distribution binomiale, poisson ou gamma, les GAMs estiment la courbe de réponse avec une fonction de lissage non paramétrique, qui permet d’obtenir différentes formes de courbe de réponse et donc, des résultats plus proches des observations.

Enfin, certaines de nos variables ont des observations dont la concentration est très forte sur une faible variation. Afin d’obtenir une meilleure vision de la distribution de ce type de variables, nous avons transformé le pourcentage de population d’origine afro-américaine, le taux de densité, le niveau de revenu moyen, la densité d’espace vert public et la densité routière par leur logarithme naturel.

La relation des variables explicatives avec la variable dépendante est conforme aux résultats de l’analyse bivariée. Le taux de prêts subprime, le taux d’appréciation, le taux de saisies, la distance à l’océan, l’index de diversité et le pourcentage de population hispaniques, suivent une relation positive avec le taux de dépréciation. A l’inverse, la qualité des écoles, le taux de population de plus de 65 ans, le niveau de revenu, le niveau d’éducation, le pourcentage de population blanche, et l’index environnemental sont corrélés négativement au taux de dépréciation.

Les distributions du pourcentage de population afro-américaine, de la densité de population, de la densité des espaces verts publics et la densité du réseau de transport principal sont relativement constantes. Ces variables n’interagissent que peu avec notre variable dépendante.
Figure 25. Distribution des variables explicatives:
Axe des X = Variable dépendante (HPD)
Axe des X = Variables explicatives
4.2.4 Examen des corrélations

Il arrive parfois que plusieurs variables explicatives soient fortement corrélées les unes aux autres. Cela peut avoir des conséquences importantes dans nos estimations. En effet, même si les résultats de notre analyse restent non biaisés, c'est-à-dire que le pouvoir explicatif du modèle n’est pas affecté, il devient alors beaucoup plus difficile de séparer avec précision les effets de nos variables explicatives sur notre variable dépendante (Bressoux 2008). De plus, les estimations vont devenir très sensibles aux changements dans notre modèle et l’inclusion ou l’exclusion d’une variable peut beaucoup faire varier les estimations. Il peut donc être utile d’exclure certaines variables de notre modélisation.

Afin de contrôler ce problème potentiel, nous allons utiliser une matrice de corrélation ainsi que les indices de tolérances (TOL) et le facteur d’augmentation de la variance (VIF). Ce sont les indices les plus couramment utilisés en statistique en sciences sociales. L’examen de la matrice de corrélation constitue la première étape mais n’est pas suffisant, car il est possible qu’aucune paire de variable n’ait de corrélation forte tandis que plusieurs variables soient, ensemble, fortement colinéaires.

Une tolérance (TOL) basse correspond à une forte multicollinéarité, alors qu’en l’absence totale de multicollinéarité TOL est égal à 1. Il n’y a cependant pas de critère formel pour décider si la tolérance est suffisamment petite pour affecter de manière significative les estimations. Pour notre part, nous estimons qu’une tolérance en dessous de 0.2, soit un VIF au dessus de 5, peut révéler un problème potentiel.

La Table 4 présente les résultats de notre matrice de corrélation. Les résultats des tests TOL et VIF sont similaires à ceux de la matrice, c’est pourquoi ils ne sont pas présentés dans ce travail. Pour une meilleure visibilité, les relations qui peuvent poser problème ont été soulignées en gras. Il est important de relever que les conséquences sur les estimations ne sont sensibles qu’avec un degré élevé de colinéarité.

Bien qu’à nouveau aucun critère formel n’existe, nous suivons les recommandations de Bressoux (2008) et estimons qu’une corrélation forte pouvant avoir des conséquences néfastes sur nos estimations, doit être égale ou supérieure à 0.8, soit 64% d’informations en commun. De plus, à partir de 0.7 nous considérons que le potentiel de colinéarité est élevé et que ces deux variables explicatives méritent une attention particulière.
La matrice de corrélation ne diffère peu entre l’échelle géographique du comté et l’échelle Exurban. Les résultats de l’analyse bivariée et de l’examen des distributions nous ont cependant montré que c’est à cette dernière échelle que nous obtenons les estimations les plus satisfaisantes. Nous continuerons donc à cette échelle géographique notre analyse.

L’examen de la matrice (Table 4) permet de mettre en évidence plusieurs corrélations fortes. Une relation privilégiée entre 5 de nos variables explicatives émerge : le niveau d’éducation, le niveau de revenu, l’index de diversité et les pourcentages de population blanche et hispanique sont tous fortement corrélés entre eux.

De manière logique, le niveau d’éducation est fortement corrélé positivement au revenu moyen (0.806). Plus le niveau d’éducation est haut dans un quartier plus le revenu augmente également. La relation entre niveau d’éducation et origine ethnique de la population montre des choses intéressantes. Plus le niveau d’éducation est élevé dans un quartier, plus il y a de chances que le pourcentage de population blanche soit fort (0.778), le pourcentage de population d’origine hispanique faible (-0.971) et l’index de diversité bas (-0.842). Le niveau de revenu moyen suit le même type de relation que le niveau d’éducation, quoique plus faiblement. La relation entre variables socio-économiques et ethniques est donc extrêmement forte dans les quartiers du comté de Los Angeles.

L’index de diversité est positivement corrélé au pourcentage de population hispanique (0.822) et négativement au pourcentage de population blanche (-0.797) ainsi qu’au niveau de revenu moyen (-0.73). La population blanche a donc généralement un bon niveau d’éducation et un salaire moyen élevé et vit dans des quartiers plutôt ethniquement homogène. Les relations qu’entretient le pourcentage de population hispanique sont à l’exact opposé. D’ailleurs ces deux types de population ne se croisent que peu (-0.7).

La qualité des écoles dans le quartier est légèrement positivement corrélée au niveau d’éducation (0.714) et négativement au pourcentage de population hispanique (-0.689), mais ces relations ne sont pas suffisamment explicites pour en tirer des conclusions définitives.

Enfin, il existe également une corrélation forte entre le taux de prêts subprime et le taux de saisies de maisons, qui sont directement liés dans un même quartier.
Présentation des Résultats

Table 4. Matrice des Corrélations, Exurban

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subprime</td>
<td>1.00</td>
<td>.554</td>
<td>.795</td>
<td>-651</td>
<td>NS</td>
<td>.546</td>
<td>-568</td>
<td>.368</td>
<td>.626</td>
<td>.667</td>
<td>.393</td>
<td>-.645</td>
<td>.266</td>
<td>-.267</td>
<td>-.363</td>
<td></td>
</tr>
<tr>
<td>HPA</td>
<td>1.00</td>
<td>.426</td>
<td>-.507</td>
<td>-.479</td>
<td>.575</td>
<td>-.613</td>
<td>240</td>
<td>.645</td>
<td>-.683</td>
<td>-.401</td>
<td>-.638</td>
<td>.271</td>
<td>-.185</td>
<td>-.345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecon.</td>
<td>1.00</td>
<td>-.545</td>
<td>NS</td>
<td>-.463</td>
<td>.497</td>
<td>-.477</td>
<td>285</td>
<td>.527</td>
<td>-.568</td>
<td>.254</td>
<td>-.467</td>
<td>.104</td>
<td>-.202</td>
<td>-.257</td>
<td></td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>1.00</td>
<td>NS</td>
<td>.458</td>
<td>-.619</td>
<td>.622</td>
<td>-.309</td>
<td>-.689</td>
<td>.714</td>
<td>-.368</td>
<td>.683</td>
<td>-.263</td>
<td>.204</td>
<td>.396</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>1.00</td>
<td>NS</td>
<td>.210</td>
<td>-.131</td>
<td>-.303</td>
<td>.188</td>
<td>-.179</td>
<td>-.256</td>
<td>NS</td>
<td>-.250</td>
<td>.285</td>
<td>-.266</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop65</td>
<td>1.00</td>
<td>-.580</td>
<td>.512</td>
<td>-.289</td>
<td>-.574</td>
<td>.572</td>
<td>-.591</td>
<td>.622</td>
<td>-.218</td>
<td>.383</td>
<td>.320</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diversity</td>
<td>1.00</td>
<td>-.797</td>
<td>180</td>
<td>.822</td>
<td>-.842</td>
<td>.418</td>
<td>-.730</td>
<td>.306</td>
<td>-.240</td>
<td>.514</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>1.00</td>
<td>.314</td>
<td>-.700</td>
<td>.778</td>
<td>-.407</td>
<td>.704</td>
<td>-.283</td>
<td>.211</td>
<td>.444</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>1.00</td>
<td>NS</td>
<td>NS</td>
<td>.181</td>
<td>-.246</td>
<td>.114</td>
<td>-.170</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispa</td>
<td>1.00</td>
<td>-.971</td>
<td>.429</td>
<td>-.743</td>
<td>.307</td>
<td>-.218</td>
<td>-.516</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>1.00</td>
<td>-.448</td>
<td>.806</td>
<td>-.327</td>
<td>.219</td>
<td>.531</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1.00</td>
<td>-.676</td>
<td>.371</td>
<td>-.664</td>
<td>-.454</td>
<td></td>
</tr>
<tr>
<td>Income</td>
<td>1.00</td>
<td>-.384</td>
<td>.416</td>
<td>.568</td>
<td></td>
</tr>
<tr>
<td>Road</td>
<td>1.00</td>
<td>-.236</td>
<td>-.676</td>
<td></td>
</tr>
<tr>
<td>Park</td>
<td>1.00</td>
<td>.479</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

NS = Not Significant

4.2.5 Ordination : Analyse en Composantes Principales (ACP)

Après avoir mis en évidence la distribution et les corrélations de nos variables explicatives, il est important de pouvoir les ordonner en vue d’une meilleure interprétation de la sélection de notre modèle prédictif.

L’analyse en composantes principales (ACP) est une méthode d’analyse des données qui consiste à recherche les directions dans l’espace représentant le mieux les corrélations entre nos variables indépendantes. Elle met en lumière un certain nombre d’axes F qui expliquent le mieux la dispersion du nuage de points et tente ainsi de l’ordonner. Le but de l’ordination est de simplifier l’interprétation d’un jeu de données complexe en réduisant son nombre de
variables, afin de garder uniquement un jeu totalement décorrélé. Chaque axe correspond ainsi à un groupe de de variables que l’on peut généralement interpréter.

La Figure 26 présente les résultats de l’ACP sur notre jeu de données. L’importance relative de chaque axe (Facteur) est mise en évidence sur la Figure 26a. Seul trois axes ont une importance relative dans notre modèle. La Figure 26c montre la composition de chacun des trois axes. Les prédicteurs sont présentés dans l’ordre d’importance de leur corrélation à leur axe d’ordination.

L’axe F1 explique près de 50% de notre modèle. Il est composé du niveau d’éducation, du revenu moyen, de l’index de diversité, du pourcentage de population d’origine blanche et hispanique, ainsi que du taux de prêts subprime. Ces variables ont déjà été mises en évidence lors de l’examen de la matrice de corrélation. Ordonnées, elles forment un axe de variables liées à la spécificité du quartier, regroupant les variables ethniques et socio-économiques. Le taux de prêts subprime montre également une relation forte avec cet axe.

L’axe F2 augmente le pouvoir explicatif de notre modèle à 61%. Sa contribution au modèle est donc de 13%. Ce deuxième axe se compose, dans l’ordre, de la distance à l’océan, de la densité des espaces verts publics et plus modestement du taux de densité de population, de la densité des axes de transport principaux et de l’index environnemental. Ce second axe est donc principalement formé des variables environnementales.

Le troisième axe (F3) a une importance relative de 9%. Il est composé du pourcentage de population d’origine afro-américaine ainsi que dans une moindre mesure du taux de saisies de maisons et de la densité du réseau de transport principal.

La Figure 26b ordonne graphiquement le nuage de points des estimations en deux axes, horizontal (axe F1 de quartier) et vertical (axe F2 environnemental). Le niveau de revenu et la distance à l’océan sont les deux variables explicatives dont le nuage de points se rapprochent le plus de ces deux axes respectifs.
Présentation des Résultats

Figure 26. Analyse en Composante Principale (ACP)

Figure 26a Importance relative des principaux axes

Figure 26b. Ordination en deux axes : F1, F2

Figure 26c. ACP, Composition des trois axes, F1, F2, F3
Présentation des Résultats

4.2.6 Sélection et élaboration d’un modèle prédictif

Après avoir ordonné les variables explicatives de notre jeu de données, il s’agit à présent de sélectionner le meilleur modèle possible à l’explication de la variation de la dépréciation des valeurs immobilières entre les quartiers du comté de Los Angeles.

La régression stepwise sélectionne de façon automatique les variables prédictives en vue d’obtenir le modèle le plus simple au plus fort pouvoir explicatif. Le R carré ajusté est utilisé pour mesurer la puissance de notre modèle. La sélection des variables s’effectue pas à pas, soit de manière rétrograde en partant du jeu de données complet (Backward elimination), soit de manière progressive en partant d’un modèle vide (Forward selection). Dans ce dernier cas la régression commence par sélectionner la variable au R carré le plus important. A chaque pas, ensuite, la variable explicative augmentant le plus le R², ou une autre statistique de sélection, est ajoutée.

L’outil GRASP permet la combinaison des deux méthodes. Plusieurs tests sont possibles pour effectuer cette sélection. Les tests AIC et BIC sont les plus courants. Le critère d’information d’Akaike (AIC), mesure la quantité d’informations perdue lorsqu’on représente les observations par le modèle. Il sélectionne le modèle le plus proche de la réalité, mais à tendance à favoriser un modèle compliqué avec beaucoup de variables. Les résultats peuvent également être biaisés pour les petits échantillons (Viallefont 2008). Le modèle BIC est plus restrictif et favorise un modèle simple, mais qui peut parfois manquer de puissance statistique. C’est ce dernier test que nous utiliserons pour sélectionner nos variables explicatives. En effet, les résultats de notre modèle montrent que la différence de pouvoir explicatif entre les deux tests est très faible.

Le test BIC a sélectionné le taux de prêts subprime, le taux d’appréciation, l’index de diversité et la densité d’espaces verts, comme la combinaison de variables explicatives la plus simple au plus fort pouvoir explicatif pour l’élaboration de notre modèle prédictif.

Ces quatre variables représentent les deux plus importants axes de l’ACP, ainsi que trois des cinq catégories de variables de notre jeu de données. Le taux d’appréciation et le taux de prêts subprime représentent les variables explicatives spécifiques à cette crise. L’index de diversité représente les variables ethniques. L’ACP montre qu’il rend également indirectement compte des variables socio-économiques. Enfin, la densité des espaces verts représente la catégorie des variables environnementales. Au final, seules les variables d’accessibilité ne sont, à priori, pas représentées dans notre modèle.
Présentation des Résultats

4.2.7 Validation du modèle
La régression stepwise a sélectionné, à l’aide du test BIC, les variables explicatives qu’elle considère, ensemble, comme le modèle le plus simple au plus grand pouvoir explicatif à l’explication des variations de dépréciations des valeurs immobilières entre les quartiers du comté de Los Angeles. Cette sélection doit encore être validée en vue de réaliser des prédictions spatiales.

L’outil GRASP offre deux méthodes distinctes de validation. En premier lieu, la validation simple est une transcription des valeurs observées des réponses (axe des X), par rapport aux valeurs prédites par notre modèle (axe des Y).
En deuxième lieu, la cross validation est une validation basée, non sur l’ensemble des prédictions, mais sur un nombre défini d’échantillons (ici N = 4) mélangés et pris au hasard depuis l’ensemble des résultats de prédictions. La combinaison des prédictions de chaque échantillon est alors mise en graphique contre les données observées. Dans les deux cas, un coefficient simple de corrélation (R) est calculé entre les observations et les prédictions, pour les distributions normales. Plus ce coefficient se rapproche de 1 plus le modèle est bon. La Figure 27 présente les résultats de la validation de notre modèle.

Le coefficient de validation est de 0.875, soit un R carré de 0.766. Ces résultats sont supérieurs à ceux que nous avons obtenus avec une régression des moindres carrés. La cross validation confirme ces bon résultats, avec un coefficient de 0.84, soit un R carré de 0.706. Le pouvoir explicatif de notre modèle est donc supérieur à 70% dans les deux cas, et ce malgré l’inclusion de seulement 4 variables sur les 18 à disposition dans notre jeu de données. Nos observations sont donc suffisamment proches des prédictions pour effectuer des prédictions spatiales à partir de notre modèle.

L’analyse des résidus (graphique du bas) permet d’évaluer la normalité de notre distribution par la construction d’un graphique Q-Q (quantile-quantile), qui représente la distribution théorique (ici, normale) et empirique des résidus. Si les distributions sont linéairement liées, leur représentation conjointe doit s’aligner sur une droite, ce qui est pratiquement le cas dans notre modèle. Nous pouvons donc en conclure que notre modèle se rapproche d’une distribution normale.
Présentation des Résultats

4.2.8 Interprétation

Notre modèle validé, il est possible d’effectuer des prédictions spatiales de la variation de notre variable dépendante à partir des variables explicatives sélectionnées. Cependant, l’examen de la contribution de chacune des variables sélectionnées, au modèle global est indispensable à sa bonne interprétation. Elle permet de juger de l’importance relative de nos prédicteurs à l’explication du modèle et de répondre, ainsi, à la deuxième hypothèse de notre travail (H2).

La Figure 28 montre l’interprétation de la contribution de chacune des variables au modèle global sous GRASP. La colonne de gauche (drop), explique la contribution marginale de chacune des variables. Plus la contribution est élevée, moins cette variable peut être remplacée par une autre combinaison de variables dans notre modèle. L’histogramme du milieu (inside) montre la contribution relative des variables explicatives à l’intérieur de notre modèle. Enfin, le troisième histogramme (alone) montre le pouvoir explicatif potentiel de chacune de nos variables prise séparément.
Le taux de prêt subprime et le taux d’appréciation sont les variables explicatives au plus fort potentiel. Insérées dans le modèle, ces variables restent dominantes. La contribution du taux de diversité est cependant proche du taux d’appréciation. Dans les deux cas, la contribution de la densité des espaces verts publics est la plus faible.

La contribution marginale du taux de diversité est faible en comparaison de sa contribution potentielle et relative, mais il rend compte en grande partie de l’ensemble des variables de l’axe F1 de notre ACP.

Figure 28. Interprétation des contributions du modèle 2, GRASP
4.2.9 Prédictions Spatiale

A partir du modèle de distribution statistique, l’outil GRASP permet des prédictions spatiales de la variation de notre variable dépendante. Ces prédictions peuvent être utilisées pour examiner l’influence de notre variable environnementale locale sur les variations de dépréciation de prix de vente des maisons de Los Angeles et ainsi répondre à la dernière hypothèse de notre travail (H3).

GRASP construit le modèle de variation de la dépréciation du prix des maisons, à partir des observations. Il est exprimé sous la forme d’un graphique représentant la réponse de la dépréciation à nos variables explicatives. Les quatre prédicteurs de notre modèle sont représentées sur l’axe des X sur quatre graphiques différents. La variable dépendante HPD (Housing Price Depreciation) se trouve sur l’axe des Y. La Figure 29 illustre les courbes de réponses. Ces courbes représentent le résultat d’un équilibre multivarié, différent des estimations bivariées. Le modèle est construit afin de rapprocher au mieux les prédictions des observations.

L’examen des courbes de notre modèle, montre que la variation du taux de dépréciation varie de façon linéairement positive au taux de prêts subprime. Il s’agit de la variable la plus corrélée à notre variable dépendante. Le taux de dépréciation augmente avec le taux d’appréciation jusqu’à un seuil vers 300% ou le nombre d’observations diminue et la relation entre ces deux variables s’inverse. Conformément à nos premières estimations, le taux de dépréciation répond également de façon positive à l’index de diversité, mais la courbe se tasse et devient presque constante aux alentours de 65.

La relation avec la variable de densité des espaces verts ne permet pas d’effectuer de prédictions spatiales à partir de ce modèle. La contribution de la variable parc, dans le modèle multivarié, est trop faible pour être interprétée. Sa courbe de réponse est pratiquement constante et proche de zéro donc difficilement interprétable.
Présentation des Résultats

Figure 29. Courbe de réponse des variables explicatives, Modèle 2, GRASP
5. Discussion des résultats

5.1 Analyse Bivariée

5.1.1 Examen Spatial des Données
L'examen de la Figure 7 laisse apparaître une distribution spatiale du taux de dépréciation qui n’est pas aléatoire. Les travaux d’Aalbers (2008), Goldstein (2008), Hammel (2008), Immergluck (2008a), Kaplan (2008) et Kaplan et Sommers (2009) ont montré que la crise des subprime avait une dimension spatiale forte. Dans notre cas, il est possible de distinguer deux types de structure spatiale différentes : une structure centre-périphérie pour les quartiers en milieu entièrement urbain et une structure spécifique aux quartiers se trouvant à la périphérie nord du comté, qui ont été fortement touchés par le taux de dépréciation.

La structure spatiale centre-périphérie montre l’une des conséquences connues de l’étallement urbain avec la formation d’un centre où sont concentrés les minorités ethniques et les bas revenus et dont la qualité environnementale est généralement mois bonne que le reste du territoire (Hite 2008). Les Figures 19 et 20 montrent des similitudes entre le niveau d’éducation, le niveau de revenu et le taux de dépréciation (Figure 7), qui confirment cette tendance.

La structure centre-périphérie se dégage très nettement avec un centre au revenu et au niveau d’éducation moins élevé que pour les quartiers situés en périphérie. La population d’origine hispanique (Figure 19) se concentre principalement au centre ou la densité de population et le taux de prêts subprime sont élevés (Figures 8 et 18) alors que l’origine ethnique des quartiers de périphérie proche est majoritairement blanche (Figure 15). La qualité des infrastructures scolaires est également meilleure en périphérie (Figure 11). Ces quartiers ont un taux de saisies de maisons inférieur à la moyenne (Figure 10) et ont été moins exposés à l’explosion de la bulle immobilière que les quartiers du centre (Figure 9).

Le deuxième type de structure qui apparaît concerne les quartiers se situant à la périphérie nord du comté, à partir de la vallée de San Fernando. Cette disparité confirme notre volonté de contrôler ces quartiers dans notre analyse. Elle rejoint les constatations de Ong et Pfeiffer (2008) et celle de Firestine (2009), dans leurs travaux respectifs, sur la crise des subprime au niveau du comté de Los Angeles.
5.1.2 Examen du potentiel explicatif

Contrairement à Immergluck et Smith (2005), qui ont identifié une concentration élevée des prêts subprime chez les personnes âgées, nos résultats montrent une relation plutôt négative avec le taux de dépréciation des prix. Cette estimation rejoint les conclusions de Kaplan et Sommers (2009), qui considèrent le pourcentage de population de plus de 65 ans comme une force stabilisatrice au niveau du quartier.

Le potentiel explicatif des variables environnementales est relativement faible, comparé aux autres variables, bien qu’elles soient significatives dans l’analyse bivariée. De manière générale, les variables environnementales locales jouent un rôle mineur dans la détermination des prix dans les analyses hédoniques (Palmquist 2005). Il est cependant nécessaire d’attendre les résultats de l’analyse multivariée pour se prononcer définitivement sur l’influence exacte de ce type de variables sur notre variable dépendante.

5.2 Analyse Multivariée

5.2.1 Régression (hypothèse H1)
La régression (hypothèse H1) examine uniquement les prédicteurs identifiés comme les déterminants les plus proches à l’origine de la crise. Les conclusions de l’analyse montrent qu’à elles seules, ces variables rendent compte de près de 60% des variations de dépréciation de prix entre quartiers du comté de Los Angeles (55% sur la région d’étude entièrement urbaine). Ces résultats confirment l’hypothèse H1 que ces variables sont les déterminants les plus importants de la dépréciation des prix de l’immobilier résidentiel sur le comté de Los Angeles. Il est cependant probable que ces variables perdent un peu de leur pouvoir explicatif au profit d’autres variables dans l’analyse multivariée.
Discussion des Résultats

5.2.2 Examen des corrélations
La corrélation, à l’échelle du quartier, entre taux de subprime et taux de saisies de maisons (foreclosure) a été démontrée par la littérature scientifique. Les individus qui ont contracté des prêts à risques ont plus de chance de ne pas pouvoir rembourser et de voir leur maison saisie (Immergluck et Smith 2005, Aalbers 2008, Kaplan 2008).

La population blanche habite, de manière générale, dans des quartiers au niveau d’éducation et au revenu médian élevé, et se mélique moins aux autres types de population que le reste des habitants du comté de Los Angeles. A l’opposé, la population hispanique a plus de chance d’habiter dans des quartiers plus diversifiés ethniquement, à faible revenu, faible niveau d’éducation et aux écoles dont les résultats sont moins bons. Il semble que Los Angeles souffre, en général, d’ancien schéma d’exclusion et de ségrégation ethnique qui façonne encore aujourd’hui la structure des quartiers de la ville (Davis 2006, Dymski 2007, Wyly et al. 2008).

5.2.3 Analyse en composantes principales
L’analyse en composantes principales peut être utilisée pour résoudre les problèmes de colinéarité et du trop large nombre de variables dans le modèle (Lake et al. 1998). Cette technique statistique ordonne nos variables en cherchant dans un jeu de données intercorrélaté un nombre restreint de facteurs décorrélés appelés aussi composantes principales. Les résultats de l’analyse ont mis en évidence trois axes principaux (F1, F2 et F3) qui expliquent à eux trois plus de 70% de la variabilité de notre jeu de données.

L’axe F1 comprend les variables de quartiers, les variables ethniques et socio-économiques. Dans l’ordre d’importance on retrouve le niveau d’éducation, le niveau de revenu, le pourcentage de population d’origine hispanique, l’index de diversité, le pourcentage de population blanche et le taux de prêts subprime. Ensemble, ils forment les principaux déterminants des variations du taux de dépréciation sur le comté de Los Angeles. Le taux de...
prêts subprime est fortement associé à cette catégorie de variables, confirmant que l’attribution de ce type de prêt se concentre principalement dans certains types de quartier, qui supportent en majeure partie le poids de la dépréciation (Immergluck et Smith 2006a, Immergluck 2008, Kaplan 2008).

Le deuxième axe en termes d’importance relative dans nos données, est un axe que nous avons qualifié d’axe environnemental. Ce deuxième axe se compose, dans l’ordre, de la distance à l’océan, de la densité d’espaces verts et dans une moindre mesure du taux de densité, de la densité des artères routières principales et de l’index environnemental. Sa présence, en seconde position, confirme que les variables environnementales influencent la détermination de la dépréciation du prix de vente moyen dans les quartiers de Los Angeles. La corrélation entre prix des maisons et variables environnementales locales reste moins importante que les variables de quartier et sensible au choix de la région d’étude (Chay 2004).

La nomination de l’axe F2 en tant qu’axe environnemental se justifie malgré la présence de deux variables (distance à l’océan et densité de population) précédemment classée dans différentes catégories. La présence de la distance à l’océan sur le même axe que les variables environnementales s’explique par la topographie du comté de Los Angeles (Saphores et Benitez 2005).

Le comté ressemble en effet à un bassin entouré de montagne. Les vents soufflent généralement de l’océan vers l’intérieur des terres, entraînant avec eux la pollution atmosphérique. La chaîne de montagne entourant le bassin stoppe la progression des vents et bloque la pollution qui se concentre dans les régions périphériques du Nord. Le taux de pollution atmosphérique augmente donc relativement linéairement en fonction de la distance à l’océan. À l’aide des stations de relevé d’ozone atmosphérique du South Coast Air Quality Management District (SCAQMD, agence de contrôle interrégionale de qualité de l’air, dont Los Angeles fait partie), nous avons pu montrer ce phénomène, grâce aux techniques de Kriegage, qui fournissent les meilleurs résultats en termes d’estimation et d’interprétation (Kim et al. 2003, Anselin et Le Gallo 2006, Figure 30). L’ozone a été choisi comme polluant atmosphérique en raison de sa visibilité (c’est l’une des causes principales du « smog ») et de sa popularité dans les médias (Anselin et le Gallo 2006). Cependant, le nombre de stations de mesure (en noir sur la carte) n’est pas assez important pour utiliser nos estimations de façon statistiquement valable.
Enfin, le taux de densité est également un reflet de l’utilisation du sol (Marans 2003). Plus il est élevé, moins le quartier contient d’espaces libres favorable à l’établissement d’espaces verts. Son impact sur la mobilité reste cependant à vérifier.
Figure 30. Lien entre la distance à l'océan, à gauche et les relevés des maxima d'ozone, à droite, sur le comté de Los Angeles. En noir, les stations de mesure du SCAQMD
5.2.4 Elaboration, validation et interprétation du modèle prédicatif

La régression stepwise sélectionne de façon automatique les variables prédictives en vue d’obtenir le modèle le plus simple et le meilleur possible. La sélection des variables s’effectue pas à pas, soit de manière rétrograde, en partant du jeu de données complet (Backward elimination), soit de manière progressive, en partant d’un modèle vide (Forward selection).

Quatre variables ont été sélectionnées par la régression pour l’établissement de notre modèle final. Il s’agit du taux de prêts subprime, du taux d’appréciation, de l’index de diversité ainsi que de la densité des espaces verts publics. Le modèle est validé à plus de 0.875 et 0.84 (cross validation), soit un R carré situé entre 0.7 et 0.77. Cela signifie que notre modèle explique entre 70 et 77% des variations de dépréciation de prix entre quartiers sur le comté de Los Angeles libéré de ses éléments de périphérie. Nous pouvons être satisfaits de cette sélection, qui malgré l’absence des variables structurelles, explique au trois quarts notre variable dépendante.

Suivant le degré de lissage de nos courbes, la variables de saisies de maisons (foreclosure) apparaît dans notre modèle principal. Son inclusion dans ce modèle, signifie que malgré sa forte corrélation au taux de prêts subprime ce prédicteur peut ajouter du pouvoir explicatif au modèle. Cette constatation pourrait confirmer la thèse avancée par certains chercheurs (Immergluck et Smith 2006b, Lee 2008, Been 2008) que le taux de saisies de maison a un impact significatif sur la valeur des propriétés avoisinantes (« contagion effect »).

L’examen de la contribution de chacune des variables sélectionnées, au modèle global, est indispensable à sa bonne interprétation. Il permet de juger de l’importance relative de nos prédicteurs à l’explication du modèle. Bateman (2002), a relevé que les variables de quartier sont celles au plus grand pouvoir explicatif devant les variables structurelles, les variables d’accès et les variables environnementales.

Dans notre cas, les deux variables spécifiques à la crise confirment leur importance par leur présence combinée dans notre modèle prédicatif et par la puissance de leur pouvoir explicatif (Hypothèse H1). Le taux de prêts subprime joue un rôle principal dans l’explication du déclin du prix de vente des maisons en créant une classe de propriétaires particulièrement sensibles à la baisse des prix et qui tendent à être en défaut de paiement plus rapidement que la moyenne (Gerardi et al. 2008).
Discussion des Résultats

L’index de diversité rend compte du premier axe mis en évidence lors de l’ACP. Les variables de quartier sont donc présentes dans notre modèle final, confirmant que, comme groupe, les indicateurs de quartier sont hautement significatifs (Zabel 2000). La géographie de la crise semble donc bien correspondre à la distribution ethnique « au dessus et au-delà de toute correspondance » avec le niveau de revenu (Kaplan 2009).

La densité des espaces verts publics est présente dans le modèle final, et rend compte de l’axe 2 de l’ACP, soit de l’axe des variables environnementales locales. Cependant, les variables environnementales ont l’importance relative la plus faible dans notre modèle, confirmant que si elles sont significatives pour expliquer les variations de dépréciation des prix de vente des maisons, leur importance reste moindre comparé au pouvoir explicatif des autres catégories de variables (Smith et Huang 1995, Boyle et Kiel 2001, Firestine 2009).

L’absence des variables d’accessibilité de notre modèle est conforme aux travaux de Dubin et Sung (1990), qui avaient notamment montré que les caractéristiques de quartiers sont des variables plus importantes que la qualité des services publics dans la détermination des prix du logement.

De manière globale, la présence d’un représentant des axe F1 et F2 de l’ACP confirme que les variables spécifiques à la crise ne sont pas suffisantes pour expliquer les variations de dépréciation de prix. La sélection du modèle prédictif valide notre deuxième hypothèse (H2), en démontrant l’importance des caractéristiques ethniques comme déterminants de la dépréciation des prix, indépendamment des variables spécifiques à la crise.

La présence de la variable de densité des espaces verts publics confirme également l’importance des variables environnementales locales dans l’explication de la variation du taux de dépréciation des prix des maisons entre les quartiers de Los Angeles. Leur influence reste cependant à évaluer, afin de répondre à notre dernière hypothèse (H3).
5.2.5 Prédicctions Spatiales

A partir du modèle de distribution statistique, l’outil GRASP permet de faire des prédictions spatiales de la variation de notre variable dépendante. Cet outil peut être utilisé pour examiner l’influence de la variation des variables environnementales locales sur la dépréciation de prix de vente de l’immobilier résidentiel, sur le comté de Los Angeles, et ainsi vérifier notre dernière hypothèse (H3).

Cependant, l’examen des courbes graphiques représentant la réponse de la dépréciation à nos variables explicatives (Figure 29), confirme la faible contribution relative de notre variable environnementale locale au modèle prédictif. Sa courbe de réponse est pratiquement constante et proche de zéro. Sa relation avec la variable dépendante évolue même à l’inverse de ce que nous attendions (plus la densité d’espaces verts est forte, plus la dépréciation grandit). Sa courbe de réponse est probablement influencée par la relative importance des autres composants de notre modèle. Il n’est donc pas possible d’interpréter la relation de notre variable environnementale locale dans le modèle multivarié. L’hypothèse H3 ne peut donc être vérifiée.

5.2.6 Conclusion

Afin de conclure cette discussion, nous souhaitons présenter une dernière représentation graphique. A partir des résultats de l’ACP, deux axes principaux ont été mis en évidence. Il s’agit des déterminants les plus importants de notre modèle. L’axe F1 correspond à un axe de variables de quartier (socio-économiques et ethniques), l’axe F2 correspond à un axe des variables environnementales locales. Nous souhaitons représenter géographiquement l’intensité de ces deux axes (Figures 31 et 32) et les comparer à la géographie de notre variable dépendante (Figure 33).

La distribution spatiale des variables de quartier respecte la structure centre-périphérie (Hite 2008). Les quartiers du centre sont économiquement plus faibles que les quartiers de périphérique à dominante ethnique blanche, dont l’homogénéité est plus élevée. La vallée de San Fernando au nord-ouest, se comporte comme une aire géographique en soi avec au centre de la vallée un niveau de variables de quartiers plutôt faible et une périphérie proche relativement aisée. L’enclave de Pomona, au nord est, montre également des valeurs faibles sur l’axe F1.
La structure spatiale de l’axe environnemental suit une logique est-ouest. La qualité environnementale est supérieure dans les quartiers proche de la côte, à l’exception des quartiers de Long Beach, où la présence du port engendre de fortes nuisances (Kozawa 2009). Les quartiers au nord de la ville de Los Angeles ont également une qualité environnementale plus faible (Saphores et Benitez 2005).

La cartographie de la variation du taux de dépréciation de l’immobilier résidentiel sur le comté de Los Angeles est une combinaison de ces deux axes, confirmant ainsi, les résultats de notre travail. La structure centre périphérie est la tendance la plus forte avec un centre (aux alentours de Compton) particulièrement touché par la crise. On retrouve encore la vallée de San Fernando et l’enclave de Pomona dans les lieux où la dépréciation de fait plus marquée. L’axe Est-Ouest influence également cette distribution, depuis le centre du comté jusqu’à la périphérie nord. Les structures spatiales mises en évidence par les axes F1 et F2 se retrouvent donc bien dans l’analyse géographique de notre variable dépendante.

Figure 31. Variation de la dépréciation du prix des maisons (HPD)
Discussion des Résultats

Figure 32. Variation de l’axe de quartier (F1)

Figure 33. Variation de l’axe environnemental (F2)
6. Conclusion

Ce travail est avant tout une recherche interdisciplinaire, en ce sens qu’il intègre les méthodes d’analyse d’approches différentes (géographie, environnement, économétrie, économie, modélisation géographique), afin créer un modèle global permettant d’aborder une problématique dans toute sa complexité.

6.1 Démarche et principaux résultats

Ce travail se base sur les fondements de l’analyse hédonique pour déterminer les variations spatiales de la crise des subprime. Son originalité réside dans l’étude de l’influence des variables environnementales locales sur la dépréciation du prix de l’immobilier résidentiel dans les quartiers du comté de Los Angeles. Un ensemble de 18 variables explicatives a été mis en place dans ce but. Une méthode statistique quantitative non paramétrique a été utilisée pour déterminer l’influence relative respective de ces variables (modèles additifs généralisés GAM). Ces méthodes ont peu été utilisées jusqu’à présent et permettent d’obtenir des relations plus précises.

Dans un premier temps, nous avons montré que l’ampleur de l’explosion de la bulle immobilière et le taux de prêts subprime constituaient bien les principaux déterminants spatiaux des variations de dépréciation de prix (H1). Ces résultats se sont avéré conformes à la littérature scientifique sur le sujet.

Dans un deuxième temps, nous avons élaboré le modèle prédictif le plus simple possible au pouvoir explicatif le plus fort, à l’aide d’un régression stepwise. Ce modèle a été construit et validé avec GRASP. Il contient quatre variables : le taux d’appréciation du prix de vente de l’immobilier résidentiel entre 2000 et 2006, le taux de prêts subprime pour 10'000 propriétaire, l’index de diversité ethnique et la densité d’espaces verts publics par quartier. Ces quatre variables sont reconnues comme formant, ensemble, le meilleur modèle possible à l’explication de la variation du taux de dépréciation du prix de vente de l’immobilier résidentiel entre les quartiers du comté de Los Angeles.

L’index de diversité ethnique et le taux de prêts subprime ont été identifiés par l’analyse en composante principale comme les principaux déterminants de l’axe F1, qui rend compte pour près de 50% de la variation du taux de dépréciation sur le comté. Ces deux variables sont fortement corrélées au niveau d’éducation, au niveau de revenu et aux pourcentages de population blanche et hispanique, qui jouent donc indirectement un rôle important sur le taux de dépréciation.
Ces constatations nous amènent à valider l’hypothèse H2 de notre travail : il existe d’autres variables que celles spécifiques à la crise pour expliquer le taux de dépréciation. Les caractéristiques ethniques du quartier sont, dans cette optique, fondamentales à la compréhension globale de la crise.

La présence des variables environnementales dans le modèle final souligne l’importance de ces facteurs dans l’explication de la variation du taux de dépréciation. Des prédictions spatiales à partir du modèle ont été calculées afin d’évaluer avec précision l’influence de ce type de caractéristiques. Cependant, malgré le fait que l’axe environnemental F2 de l’ACP rend compte de près de 15% de la variation du taux de dépréciation, les variables environnementales ont l’importance relative la plus faible dans notre modèle, confirmant que si elles sont significatives pour expliquer les variations de dépréciation des prix de vente des maisons, leur importance reste moindre comparé au pouvoir explicatif des autres catégories de variables. La densité de population et la distance à l’océan sont, en effet également corrélés aux variables socio-économiques. Il n’est donc pas possible de valider notre dernière hypothèse (H3).

6.2 Connaissances acquises et leur portée

Ce travail aura permis d’approfondir les connaissances entourant le déroulement de la crise des subprime aux Etats-Unis, entre 2006 et 2009. L’origine de la crise hypothécaire américaine ne se trouve donc pas dans l’augmentation impressionnante des défauts de paiement et des saisies de maison, il s’agit là des symptômes de la crise. La crise actuelle a été provoquée par l’explosion de la rapide escalade des prix de l’immobilier résidentiel américain et l’arrivée massive sur le marché immobilier de prêts hypothécaires à hauts risques à des emprunteurs longtemps exclus du système hypothécaire américain. Cette crise a été rendue possible par la transformation du système bancaire américain et le développement d’innovations financières, qui ont permis aux institutions de prêts d’émettre plus de crédits sans en absorber les risques.

Le long déclin des salaires de la classe moyenne américaine, l’accumulation de liquidités dans les années nonante et l’optimisme généralisé sur l’augmentation continue des prix de l’immobilier résidentiel ont également favorisé l’apparition de la crise.

Ce travail aura également permis de se familiariser avec les méthodes d’analyses hédoniques. Ce type de méthodes est de plus en plus utilisé en sciences sociales, car elles permettent d’expliquer le prix de vente d’un bien immobilier par ses caractéristiques. Les caractéristiques structurelles, les caractéristiques de la localisation du bien immobilier, son accessibilité aux
équipements publics et la qualité environnementale du quartier sont les quatre catégories principales de variables influençant la valeur d’un bien immobilier.

Ce travail aura aussi permis de se familiariser avec les techniques de l’analyse statistique quantitative. L’utilisation d’un modèle semi paramétrique a permis de se sensibiliser à un type d’analyse statistique encore peu utilisé en sciences sociales, mais appelé à devenir de plus en plus important. Ce type de modèle, qui offre différentes courbes de réponse grâce à des fonctions de lissage non paramétriques permet des résultats plus proches des données donc de la réalité. Les GAMs sont très appréciés et de plus en plus courants dans les analyses hédoniques, car le modèle non paramétrique permet d’intégrer la problématique de la dépendance spatiale lié au facteur de la localisation.

Cette recherche a également permis de souligner l’importance de l’échelle du quartier et la relation étroite entre origine ethnique, inégalités sociales et variations spatiales de la crise des subprime. En effet, les conséquences de la crise sont inégalement réparties sur le territoire américain et entre les quartiers d’une même région métropolitaine. Cette recherche a mis en évidence ces inégalités spatiales qui trouvent en partie origine dans la transformation des anciens schémas d’exclusion des minorités ethniques du système de prêts hypothécaires.

La concentration des ménages hispaniques et afro-américains dans les quartiers les plus pauvres du centre ville produit des inégalités géographiques, qui se reflètent dans la variation de l’intensité des conséquences de la crise sur le comté de Los Angeles.

Enfin, ce travail a permis de mettre en évidence la présence et l’importance des caractéristiques environnementales locales dans la détermination du prix d’un bien immobilier. La pollution de l’air, de bruit, la présence d’espaces verts, la vue et la proximité de sites toxiques sont autant de variables que le consommateur prend en compte lors de l’achat d’une maison. La qualité d’un quartier se mesure donc également par la qualité de son environnement. Cette qualité permet au quartier de rester attractif même en temps de crise et ainsi de mieux résister à une éventuelle dépréciation des prix de l’immobilier.

6.3 Difficulté et limites de la recherche

La réalisation de ce travail s’est heurtée à un certain nombre de difficultés et de limites que nous souhaitons exposer dans cette partie conclusive.

La récolte de données est toujours une entreprise difficile. Un certain nombre de données n’a pas pu être obtenue, pour d’autres, la récolte ne s’est pas passée comme nous le souhaitions. C’est le cas notamment des relevés sur la criminalité, du temps de trajet logement-emploi ou
de l’ancienneté des constructions par exemple. Ces cas représentent autant de limitations à une analyse la plus complète de la situation. Heureusement, toutes les données les plus importantes de notre problématique de ce travail ont pu être récoltées.

Cependant, un bémol est à mettre concernant les données environnementales. Nous avons eu plus de difficultés à récolter ce type de variables. Les données de bruit, par exemple ne sont pas disponibles publiquement et nous n’avons pu obtenir aucune information les concernant. Les relevés de pollution atmosphérique étaient trop peu nombreux sur le comté pour être étudié de manière satisfaisante. Certaines études les ont utilisés (Saphores et Benitez 2005), mais nous pensons, de notre côté, qu’une analyse au niveau du comté offre des résultats trop grossiers, entraînant une probabilité que les estimations soient biaisées trop élevée.

La construction de nos indicateurs d’espaces verts publics et de la densité des artères routières à forts trafics s’est également montrée périlleuse. Concernant les espaces verts publics, l’indicateur aurait certainement été plus satisfaisant s’il avait pu être calculé à partir d’images satellites. Nous ne disposions que du fichier des espaces verts publics et de récréation fournis par l’Université de Californie. Un premier tri a du être effectué pour séparer les variables environnementales à proprement parlé, des variables de loisirs comme défini par Marans (2003). Un jeu de données plus précis aurait certainement été souhaitable pour une analyse plus fine.

Ne disposant ni des relevés de pollution atmosphérique ni de la carte de pollution sonore du comté, nous avons donc construit un indicateur à partir du réseau de transport principal présent sur le comté. Suivant la méthodologie employée par Houston (2008), une zone tampon a été créée autour des artères principales, représentant les aires de sensibilité à la pollution aux particules fines notamment.

L’utilisation de cette méthodologie pose cependant plusieurs problèmes : elle suppose que la pollution de ces aires de sensibilité est parfaitement perçue par les consommateurs souhaitant acheter une maison. Pourtant, il est difficilement concevable qu’un consommateur à 50 mètres ou 200 mètres d’une artère principale ne perçoive de la même manière les nuisances qui accompagnent cette proximité, et cela bien que scientifiquement il soit, dans les deux cas, exposé à une pollution importante. Des données plus précises au bâtiment, notamment sur la pollution de bruit aurait donc été souhaitable et constitue la prochaine étape dans l’élaboration et la construction d’indicateurs environnementaux plus fiables qui peuvent nous permettre d’effectuer dans l’avenir des prédicitions spatiales à partir de notre modèle.
D’autre part, bien que déjà discutée, il est important de souligner les limites de l’utilisation d’une échelle au quartier. Dans une prochaine étape, il serait préférable de séparer le territoire en maillage plutôt que de respecter les unités territoriales administratives. En effet, pour plusieurs de nos indicateurs l’utilisation des ce type de frontières quelque peu artificielle pose problème. La densité de parcs par quartier, par exemple, est un bon indicateur du niveau des espaces verts publics dans le quartier, mais ne rend en rien compte des différences d’accessibilité à l’intérieur même du quartier. En effet, il est tout à fait envisageable de penser qu’un parc se situant à proximité de la frontière administrative d’un quartier soit plus proche pour la majorité des habitants du quartier à proximité que pour les habitants du quartier eux-mêmes.

La technique du maillage peut aider à résoudre ce type de problème, en ce sens qu’elle ne pose pas de frontière fixe, mais se contente de quadriller le territoire en carrés égaux de taille relativement petite. Il est alors tout à fait possible de calculer la distance de chaque espace vert public au centroïd de chacun des maillages et d’obtenir des estimations plus précises.

Enfin, la dernière limite de ce travail se retrouve dans l’impossibilité d’effectuer des prédictions spatiales à partir de scénarios de variation des conditions environnementales. Cela ne remet pourtant pas en cause la validité du modèle ni l’importance des variables environnementales, mais reflète en partie la difficulté mise en évidence de la collecte de ce type de données. C’est pourquoi, il nous a été impossible d’aller au bout de l’analyse comme nous le souhaitions.

6.4 Pistes pour un approfondissement

L’importance de la concentration de la dépréciation de la valeur des biens immobiliers résidentiels dans certains quartiers, déjà historiquement considérés comme vulnérables, augmente la probabilité de voir ces mêmes quartiers être considérés comme encore plus risqués par les institutions de prêts et abandonnés par les investisseurs. Cela pourrait les plonger dans une crise urbaine bien plus profonde dont les conséquences seraient visibles sur le long terme.

Dans cette perspective, notre travail a fourni une étape importante dans la modélisation des caractéristiques qui expliquent les variations spatiales de la crise des subprime. Il a également mis en évidence le lien persistant entre qualité environnementale, origine ethnique et statut social. Les quartiers à dominante hispanique et afro-américaine sont les quartiers les plus
touchés par la crise indépendamment du niveau de revenu, mais ce sont également les quartiers qui ont la densité de population la plus élevée, la densité de trafic la plus forte et la densité d’espaces verts la plus faible comparé aux autres communautés du comté de Los Angeles. Ces conclusions rejoignent celles de Houston et al. (2004) et posent des questions de justice environnementale. Les minorités et les bas revenus supportent, de manière générale, une part disproportionnée de la pollution du comté. Des recherches supplémentaires sont néanmoins nécessaires pour évaluer avec précision ce constat, ses implications, notamment en termes d’éthique, de santé, de risques ou de valeur immobilière, ainsi que les causes et les raisons de la persistance de ces schémas.

La qualité environnementale du quartier n’est cependant pas prise en compte dans ce programme comme un facteur pouvant jouer un rôle dans la stabilisation de la valeur d’un bien immobilier. Il est uniquement notifié que des évaluations d’impact sur l’environnement doivent être effectuées lors chaque réalisation (NGA 2009). Le rôle des variables environnementales n’est donc pas encore reconnu comme un élément important participant à la qualité urbaine d’un quartier et pouvant de ce fait contribuer à la stabilisation des prix de l’immobilier résidentiel en cas de crise. C’est vers cette reconnaissance, notamment dans les politiques de revalorisation urbaine, que se situe le terreau fertile aux futurs recherches.

Le développement toujours plus important en Californie de communautés privées, qui se regroupent en associations d’habitants et décident du développement de leur quartier, peut être
une barrière à cet objectif (Gordon 2004, Nelson 2005). Relativement homogènes d’un point de vue ethnique, ces communautés comprennent majoritairement des résidents blancs, dont le salaire médian et le niveau d’éducation sont élevés. Ils résident généralement dans les quartiers où la qualité environnementale est la meilleure. Ces communautés reproduisent ainsi les anciens schémas de ségrégation, s’autorisant le droit d’accepter ou de refuser de nouveaux membres. Elles ont par ailleurs une forte résilience aux crises immobilières de par leurs caractéristiques.

Cette tendance renforce les disparités de développement et les inégalités environnementales entre les quartiers du comté de Los Angeles. Sans une reprise en main de la planification territoriale par l’Etat, il devient difficile d’assurer la même qualité environnementale pour tous. La mise en place d’une péréquation financière entre les différentes municipalités, peut, par exemple, permettre de redistribuer les revenus des taxes perçues sur le logement entre les municipalités du comté et ainsi participer au développement des quartiers les plus pauvres. Il n’est pas sûr cependant qu’une telle solution soit acceptable au niveau politique à Los Angeles.
Liste des Figures

Figure 1. Taux annuel (%) de propriétaires de maisons aux Etats-Unis depuis 1960..............15
Figure 2. Croissance des prêts subprime...18
Figure 3. Evolution du prix de l’immobilier résidentiel entre 1987 et 2008.......................21
Figure 4. Comté de Los Angeles..37
Figure 5. Echelles géographiques d’analyse...39
Figure 6. Distribution de la variable dépendante...42
Figure 7. Variation du taux de dépréciation (HPD), Comté de Los Angeles..................43
Figure 8. Variation du taux de prêts subprime ..46
Figure 9. Variation du taux d’appréciation (HPA)..46
Figure 10. Variation du taux de saisies de maison (foreclosure)47
Figure 11. Variation des résultats du test scolaire API ..49
Figure 12. Variation de la distance à l’océan ...50
Figure 13. Variation du pourcentage de population de plus de 65 ans.........................53
Figure 14. Variation de l’index de diversité...53
Figure 15. Variation du pourcentage de population blanche.....................................54
Figure 16. Variation du pourcentage de population hispanique................................54
Figure 17. Variation du pourcentage de population afro-américaine..........................55
Figure 18. Variation de la densité de population au mile carré....................................55
Figure 19. Variation du pourcentage de population avec au moins un degré du collège ..56
Figure 20. Variation du niveau de revenu médian ...56
Figure 21. Variation de l’index environnemental ...60
Figure 22. Variation de la densité des espaces verts publics.....................................61
Figure 23. Variation de la densité des artères principales de transport.........................61
Figure 24. Variation du taux de dépréciation (HPD) en catégories.............................66
Figure 25. Distribution des variables explicatives:...72
Figure 26. Analyse en Composante Principale (ACP) ..77
Figure 27. Validation du modèle sous GRASP...80
Figure 28. Interprétation des contributions du modèle 2, GRASP.................................81
Figure 29. Courbe de réponse des variables explicatives, Modèle 2, GRASP................83
Figure 30. Lien entre la distance à l’océan, à gauche et les relevés des maximas d’ozone, à droite, sur le comté de Los Angeles. En noir, les stations de mesure du SCAQMD89
Figure 31. Variation de la dépréciation du prix des maisons (HPD).............................93
Figure 32. Variation de l’axe de quartier (F1)..94
Figure 33. Variation de l’axe environnemental (F2)...94
Liste des Tableaux

Table 1. Description des variables ... 41
Table 2. Analyse Bivariée OLS ... 68
Table 3. Régression multivariée (2SLS), Hypothèse 1 ... 70
Table 4. Matrice des Corrélations, Exurban .. 75
Bibliographie

Aalbers M.B. (2009), Geographies of the financial crisis, Area, Vol.41, No.1, pp.34-42

Anselin L. (1999), Spatial Econometrics, Bruton Center, School of Social Sciences, University of Texas at Dallas

Anselin L., Lozano-Garcia N. (2008), Errors in variables and spatial effects in hedonic house price models of ambient air quality, Empirical Economics, Vol. 34, pp. 5-34

Ashton P. (2008), Subprime lending, weak market neighborhoods, and the multiple dimensions of the mortgage crisis, in Cities destroyed (again) for cash: forum on the U.S. Foreclosure crisis, Urban Geography, 29, 8

Belsky E. S. (2008), The causes and consequences of the subprime mortgage meltdown, in Cities destroyed (again) for cash: forum on the U.S. Foreclosure crisis, Urban Geography, Vol.29, No.8, pp.745-784.

Dymski, G.A. (2007), *From financial exploitation to global banking instability: two overlooked roots of the subprime crisis*, University of California Center Sacramento, working paper

Firestine T.A. (2009), *The Mediating Effects of Green Cover on Neighborhood Housing Price Depreciation, Los Angeles County, California 2007-2008*, University of California, Department of Urban Planning, working paper

Garrison S., Rogers S., Moore M. L. (2009), *Continued decay and shaky repairs: The state of subprime loans today*, Center for Responsible lending, working paper

Gotham K. F. (2009), *Creating liquidity out of spatial fixity: Globalization and the U.S. Real estate sector*, Tulane University, working paper

Hartley P.R., Hendrix M.E., Osherson D.N. (2005), *Real Estate Values and Air Pollution: Measured Levels and Subjective Expectations*, Economics Department, Rice University, Discussion paper

National Governors Association (2009), *Emerging Trends: State Actions to Tackle the Foreclosure Crisis*, Update Report to the September Issue Brief, www.nga.org/center

Ong P., Pfeiffer D. (2008), Spatial Variation in Foreclosures in Los Angeles, Ziman Center, University of California Los Angeles, Working Paper

Wyly E., Moos M., Kabahizi E. and Hammel D. (2009), *Cartographies of race and class: mapping the class-monopoly rents of American subprime mortgage capital*, The University of British Columbia, forthcoming
