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Abstract 
Cold ecosystems are experiencing a warming rate that is twice as fast as the global average and are 

particularly vulnerable to the consequences of climate change. Solid monitoring process are required 

to understand the response of ecosystems to these abrupt changes. The Normalized Difference 

Vegetation Index (NDVI) is one of the most widely used remote sensing index for vegetation 

monitoring. However, it suffers from limitations in retrieving consistent signal for areas covered by 

seasonal snow and for coniferous forest. The Plant Phenology Index (PPI) has been developed to 

overcome these issues, primarily in northern latitudes. It could be used in other biome but has not yet 

been specifically assessed in mountainous areas despite similar climatic conditions. The aim of this 

study is to contribute to the development of remote sensing monitoring for vegetation by conducting 

a comparison and an assessment of the PPI and NDVI in mountainous regions. We focus our study on 

the canton of Valais (CH) in the European Alps and also use eddy covariance derived Gross Primary 

Production (GPP) from Torgnon (IT) for ground data correlation analysis. We use data derived from the 

MultiSpectral Instrument on the Sentinel-2 satellite constellation for the year 2018-2022 to construct 

time series for four types of vegetation: deciduous trees, coniferous trees, grasslands and shrubs. 

Regarding seasonal cycle, the NDVI is particularly noisy at the beginning/end of the snowed season 

and for coniferous trees, which is consistent with its known snow sensitivity issue and difficulties to 

retrieve signal variation in dense and evergreen vegetation. The PPI seems to deal with these problems 

but tends to overestimate peak values, which could be attributed to its logarithmic formula and 

derived high sensitivity to variations in near-infrared (NIR) and red reflectance variations during peak 

growing season. Concerning seasonal parameters retrieval, we find consistent results for the start of 

the season (SOS) and end of the season (EOS) between indices, except for coniferous trees. Peak of 

the season (POS) results exhibit important differences between the indices. Correlation analysis with 

ground-measured GPP in an alpine grassland in Torgnon (IT) shows a high Spearman correlation 

coefficient for both NDVI (0.75) and PPI (0.72). Our findings are coherent with the existing literature 

and contribute to the development of more accurate remote sensing vegetation monitoring. The PPI 

is a robust remote sensed index for vegetation monitoring in seasonal snow-covered and complex 

mountain environments.  
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1. Introduction 

1.1. Context 
Cold ecosystems, i.e. arctic and alpine regions, are suffering a warming rate twice higher than the 

global average and are particularly exposed to climate change consequences (Beniston et al., 2018; 

Gobiet et al., 2014; IPCC, 2021). Temperature (Berner et al., 2020; Corona-Lozada et al., 2019; Francon 

et al., 2017; Körner, 2021) and snow cover expansion and duration (Choler, 2015; Körner, 2021; Wipf 

et al., 2009) are known as major limiting factors for vegetation growth in these environments and both 

are influenced by climate change.   

In the Alps, the vegetation executes its seasonal phenological cycle during the snow-free period 

(Vorkauf et al., 2021). As mentioned by Leuschner & Ellenberg (2017), length of the growing period is 

one of the main determining factors of productivity. Therefore, vegetation dynamics are influenced by 

climate change which induce several consequences in the Alps, such as phenology and productivity 

shifting and vegetation greening (Asam et al., 2018; Choler et al., 2021; Francon et al., 2017, 2020; 

Tang et al., 2016). However, these links remain poorly understood and require extensive monitoring in 

space and time.  

Remote sensing  and derived vegetation indices offer the opportunity to observe vegetation dynamics 

over wide areas and temporalities (Corona-Lozada et al., 2019; Smets et al., 2022; Xie et al., 2008). 

Recently launched high spatial and temporal resolution optical sensors (e.g., MultiSpectral Instrument 

on board Sentinel-2) provide new possibilities for more detailed ecosystems monitoring, such as 

mountain vegetation dynamics (Smets et al., 2022).  

The Normalized Difference Vegetation Index (NDVI) is one of the most widely used vegetation index  in 

the past decades (Carlson, 2016; Choler et al., 2021; Jin & Eklundh, 2014; Tian et al., 2021; Tucker, 

1979; Xie et al., 2008). However, it suffers from limits for vegetation state retrieving, notably for 

seasonal snowed environments and coniferous forest (Jönsson et al., 2010). The Plant Phenology Index 

(PPI) has been developed recently to overcome these limitations and improve plant phenology 

monitoring, notably in Arctic areas, and showed great performance (Jin et al., 2017; Jin & Eklundh, 

2014).  Since, some studies provided new insights for vegetation monitoring with PPI in arid 

ecosystems (Abdi et al., 2019) and across Europe (Tian et al., 2021). To our knowledge, the PPI 

performance has not been assessed specifically for complex mountainous environment.  

This study seeks therefore to provide new perspectives to retrieve vegetation dynamics in mountain 

areas. As Arctic environment, mountain areas and more specifically the European Alps are facing a 

seasonality marked by the presence of snow and low temperatures. Therefore, the PPI could provide 

new insights for coping with the limitations of NDVI and enhance the monitoring of vegetation in 

complex environments such as mountain areas.  

To do so, we will compare and assess the capacity of PPI and NDVI to retrieve dynamics of four 

vegetations types: deciduous trees; coniferous trees; grasslands; shrubs. Our area of interest is the 

canton of Valais (CH) straddling the Bernese and Pennine Alps. In a first step, we will elaborate a 

vegetation cover map of these four vegetation types. In a second step we will construct and compare 

Sentinel-2 derived time series of PPI and NDVI and extract seasonal parameters (i.e., start of the 

season, end of the season and peak of the season). In a final step, we will compare their performance 

to retrieve ground derived Gross Primary Production (GPP) on the alpine site of Torgnon (IT). 
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1.2. Theoretical background  

1.2.1. Vegetation phenology and dynamics in the Alps  

Vegetation or plant phenology could be described as “the study of recurring events in the life cycle of 

plants” (Tang et al., 2016, p.1). As exposed by Tang et al. (2016), phenological shifts are phenomenon 

that can be seen as an indicator of the climate change ecological impacts. Furthermore, the 

consequences of phenological stages shifting (e.g. start, duration, end of the season) are multiple on 

the ecosystems such as leaf area, carbon cycle or species distribution. However, there is an incomplete 

understanding of the mechanistic links between climate change and these shifts.  

In addition, a global vegetation greening trend has been identified since the 1980s (Filippa et al., 2019; 

Keenan & Riley, 2018). In the cold areas, the greening is consistent with the recent temperature 

increase (Keenan & Riley, 2018). While this trend is well-documented in the Arctic (Berner et al., 2020; 

Myers-Smith et al., 2020), there are only few studies in the European Alps (Carlson et al., 2017; Choler 

et al., 2021). Therefore, the recent technological advancements, in particular remote sensing, offer 

new possibilities for vegetation dynamics monitoring, particularly in wide and complex ecosystems 

(Smets et al., 2022; Tang et al., 2016). 

1.2.2. Remote sensing for vegetation monitoring 

As described by Xie et al. (2008), a remote sensing sensor is a tool that collects data (e.g. spectral) 

about an object or a scene from a distance. Objects (including vegetation) possess their own spectral 

signature. It is therefore possible to characterize the type and condition of vegetation from its spectral 

characteristics. The fraction of photosynthetically active radiation could be retrieved using the 

radiance in the red and near-infrared (NIR) spectrum, with potential addition of other wavelengths. 

Therefore, spectral band of these wavelengths of interest are included in the construction of 

vegetation indices (VIs) like NDVI and PPI (Jin & Eklundh, 2014; Tucker, 1979; Xie et al., 2008).  

Different sensors have different spectral, spatial and/or temporal characteristics and are therefore 

more or less adapted according to the target (Xie et al., 2008). For global, continental to national 

mapping, the MODerate resolution Imaging Spectroradiometer (MODIS) is extensively used (e.g., 

Choler et al., 2021; Jönsson et al., 2010; Stanimirova et al., 2019), due to its 1 to 2 days temporal 

resolution and 250 to 1000 m spatial resolution (depending on the spectral band). Landsat 8/9 

satellites are widely used for regional scale with a spatial resolution of 30 m and a temporal resolution 

of 16 days (e.g., Carlson et al., 2017; Poussin et al., 2021). More recently Sentinel-2 satellites 

constellation and their multispectral products offer new observation possibilities for continental to 

local mapping with a spatial resolution of 10 m and a revisit time of 5 days (Tian et al., 2021).  

Land use and land cover changes are of primary importance for many domains in science and practical 

applications (Giuliani et al., 2022). Regarding vegetation, the red-edge band of the multispectral sensor 

on board Sentinel-2 offers new mapping possibilities, e.g. for grasslands and shrubs, in addition of the 

increased spatial resolution (Bayle et al., 2019; Filippa et al., 2022).  

By studying phenological aspects, seasonal trajectories and phenological metrics could be retrieved 

from satellite imagery. It therefore permits phenological monitoring through intra- and inter- annual 

time steps at different spatial scale, depending on the study goal (Smets et al., 2022).  

Concerning technical and practical aspects of Earth Observation (EO) data, as Giuliani et al. (2017) 

noted, an increasing proportion of them are freely and openly available. Although it’s a great 

opportunity for data access, the important volume of these ones needs to be treated and integrated 

in an appropriate way by the user, which is a known issue. To overcome this problem, recently 
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constructed data cubes provide structured and ready to-use data as a multi-dimensional array 

(Baumann, 2017; Giuliani et al., 2017). Therefore, parameters for environmental monitoring (e.g. 

vegetation) could be directly implemented in a data cube and released as analysis ready data (Giuliani 

et al., 2017).  

1.2.3. Vegetation indices 

NDVI 

As mentioned before, the NDVI is one of the most widely used index for vegetation studies and 

monitoring. As noted by Jin & Eklundh (2014), the popularity of this index is due to its relative 

robustness against noise and sun-sensor geometry variations and the availability of long-term time 

series at a global scale. The NDVI is calculated such as :  

𝑁𝐷𝑉𝐼 =
 ρ NIR −  ρ Red 

ρ NIR +  ρ Red
 

where ρ NIR is reflectance in the near infrared band and ρ Red is reflectance of the red band. The result 

is used as a proxy of the land surface greenness (Choler et al., 2021; Tucker, 1979) : a value of - 1 

indicates a water surface ; a value between 0 and 0.2 corresponds to almost non-vegetation areas; a 

value close to 1 signifies a dense and green vegetation cover. A healthy vegetation cover tends to have 

a high absorption of photosynthetically active radiation, captured in the red band and a low absorption 

of low infrared radiation, which could induce damage to plants due to overheating (Carlson, 2016). 

This index however suffers from two major limitations (Jin & Eklundh, 2014) : (i) its sensitivity to soil 

background (e.g., snow) and (ii) its saturation at high vegetation density. Particularly, this index express 

difficulties to catch small amplitude variation, like evergreen coniferous forest (Tian et al., 2021). 

PPI 

Jin & Eklundh (2014) have developed a physically-based spectral index to characterize the phenological 

dynamics of vegetation: the Plant Phenology Index (PPI). This index has an almost linear relationship 

with the green Leaf Area Index (LAI) and reposes on the NIR and Red reflectance values. It is based on 

Beer's law, modified for canopy reflectance. PPI has the same unit as LAI (m2 ∙ m-2) and is formulated 

as (Jin et al., 2017; Jin & Eklundh, 2014; Tian et al., 2021) : 

𝑃𝑃𝐼 =  −𝐾 × ln (
𝐷𝑉𝐼𝑚𝑎𝑥 − 𝐷𝑉𝐼

𝐷𝑉𝐼𝑚𝑎𝑥 − 𝐷𝑉𝐼𝑠
) 

where DVI (Difference Vegetation Index) is the difference between NIR and Red reflectance; DVImax is 

the maximum canopy DVI of a specific site; DVIs is the soil DVI. K is a gain factor given by: 

 

𝐾 =  
1

4 ∙ (𝑑𝑐 +  0.5 ⋅ (1 − 𝑑𝑐)/𝑐𝑜𝑠(𝜃𝑠)) 
 ×  

1 + 𝐷𝑉𝐼𝑚𝑎𝑥

1 − 𝐷𝑉𝐼𝑚𝑎𝑥
 

where dc is an instantaneous diffuse fraction of solar radiation, when the sun is at zenith angle 𝜃s 

(obtained from the corresponding scene metadata), calculated as: 

𝑑𝑐 =  0.0336 +  0.0477/𝑐𝑜𝑠(𝜃𝑠) 

For further information about the PPI formulation, we refer to the reference paper of Jin & Eklundh 

(2014).  
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The PPI is relatively insensitive to snow cover in comparison to NDVI. Furthermore, PPI is strongly 

correlated with GPP (i.e. the amount of carbon biomass produced by vegetation for a given length of 

time) and could therefore complement or substitute NDVI for vegetation growth dynamics monitoring, 

particularly for evergreen coniferous forest with relatively low seasonal amplitude (Jin et al., 2017, 

2019; Jin & Eklundh, 2014; Tian et al., 2021). As mentioned by Tian et al. (2021), PPI has been primary 

tested in boreal areas using MODIS data despite its potential for phenology mapping through different 

ecosystems at higher resolution. Therefore, they call for more PPI performance testing across different 

biomes with more accurate resolution. In their study, they calibrated vegetation phenology Sentinel-2 

dataset with ground data of GPP (derived from eddy covariance Fluxtower), Phenocam green 

chromatic coordinate (GCC) and phenology ground observations from the Pan-European Phenological 

database (PEP725) network. To do so, they compared the performance of NDVI, the two-band 

enhanced vegetation index (EVI2) and PPI for Europe-wide seasonal phenology mapping and 

phenology metrics retrieval. The PPI showed promising results by performing better for GPP 

photosynthetic phenology mapping and for retrieving phenological phases issued form PEP725 data. 

However, no conclusive results have been drawn from greenness phenology, retrieved form Phenocam 

GCC data. In another way, Abdi et al. (2019) used the PPI to build a remote sensed GPP estimation 

model for semi-arid ecosystems of Africa. PPI-based GPP model demonstrated superior performance 

compared to three others commonly used remote sensing models. The PPI has been recently 

implemented in the European Union’s Earth Observation Programme (Smets et al., 2022). 

1.2.4. Copernicus High-Resolution Vegetation Phenology and Productivity (HR-VPP) product  

The European Union’s Earth Observation Programme is named Copernicus 

(https://www.copernicus.eu). Following Smets et al. (2022), the program provides freely and openly 

information based on satellite Earth observation about six thematic: (i) atmosphere, (ii) marine 

environment, (iii) land, (iv) climate change, (v) emergency management and (vi) security. Information 

about vegetation are supplied by the Copernicus Land Monitoring Service (CLMS, 

https://land.copernicus.eu/) and are derived from the Sentinel-2 satellites constellation (2A and 2B). 

Therefore, data user benefit from the high resolution and revisit time from the latter, respectively 10 m 

and 5 days, grouped under the High-Resolution Vegetation Phenology and Productivity (HR-VPP) 

product suite. It comprises three product packages:  

1. The raw Vegetation Indices (VIs): in addition of the PPI and NDVI, the LAI and the Fraction of 

Absorbed Photosynthetically Active Radiation (FAPAR) are provided for every Sentinel-2 

observation.  

2. The Seasonal Trajectories (STs): these products are based on the raw PPI observations. A 

smoothing and gap filling function is applied on a seasonal basis to produce a regular time 

series. A derived image every 10 days is finally provided.  

3. The Vegetation Phenology Parameters (VPPs) : derived from the STs of PPI, these products 

provide phenology metrics (e.g., start, peak, end of the season).  

1.2.5. Time series analysis 

Following Kuenzer et al. (2015), time series correspond to real-value, continuous or discrete series of 

data, with values referring to equidistant points in time. The temporal variations of values could 

therefore emphasis periodic, cyclic, transient, or random dynamics. They are helpful in a large scope 

of disciplines from economics to astronomy or geophysics but also remote sensing. By using satellite 

images, we could retrieve time series at the revisit time interval. The revisit time is about 16 days for 

Landsat. This relative long revisit time with the possibility of clouded observation contamination does 

not offer reliable opportunity for phenology studies (Tian et al., 2021).  Therefore, Sentinel-2 and its 

https://www.copernicus.eu/
https://land.copernicus.eu/
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5-days revisit time offer a good opportunity. However, the clouded observation contamination risk 

persists. We therefore need to apply a fitting function to retrieve the vegetation seasonal signal.  

As mentioned by Eklund & Jönsson (2017), time series of vegetation index derived from satellite 

spectral data are useful to follow seasonal vegetation development through a simple season but also 

through multiple years. Therefore, they developed the TIMESAT software (Jönsson & Eklundh, 2002; 

2004). It’s a useful software package to analyze time series, particularly of satellite sensor data (Eklund 

& Jönsson, 2017). It permits to explore time series data in details and retrieve seasonality parameters, 

such as start of the season, peak of the season or end of the season. 

1.2.6. Fluxtower data 

FLUXNET is a global network that provides concentration values of carbon dioxide and water vapor in 

addition of micrometeorological and energy variables which permits to measure flux between the 

biosphere and the atmosphere (Baldocchi et al., 2001). Flux measurement tower combined with the 

eddy covariance technique enables a direct and non-destructive calculation of the greenhouse gases 

and energy exchange between an ecosystem and the atmosphere, usually at a half-hour time step. It 

permits therefore to : (i) study ecological and physiological development of single ecosystems; (ii) serve 

as ground measurement for the calibration of models and remote sensing operations (Papale, 2020). 

The GPP could therefore be estimated using the measured CO2 fluxes to parameterize a model based 

on light-response curve and vapor pressure deficit, both of which are key factors for photosynthesis 

(Pastorello et al., 2020). These data have been used in precedent remote sensing studies for ground 

validation (e.g., Abdi et al., 2019; Tian et al., 2021). 

1.3. Problematic and research questions 
The aim of the study is to contribute to the development of remote sensing monitoring for vegetation 

by comparing and assessing the performance of the Plant Phenology Index (PPI) and Normalized 

Difference Vegetation Index (NDVI) in mountainous areas. It seeks to provide new insights into remote 

sensing methodologies for vegetation monitoring in mountainous areas to enhance our understanding 

of vegetation dynamics in complex environments. Therefore, we look to answer to the following 

questions: 

- How do the Plant Phenology Index (PPI) and the Normalized Difference Vegetation Index 

(NDVI) retrieve the seasonal cycle of different vegetation types in mountainous areas?  

- How do the Plant Phenology Index (PPI) and Normalized Difference Vegetation Index (NDVI) 

differ (or not) by retrieving seasonality parameters of different vegetation types in 

mountainous areas? 

- How are the Plant Phenology Index (PPI) and the Normalized Difference Vegetation Index 

(NDVI) correlated with ground-measured Gross Primary Production (GPP) in mountainous 

areas? 
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2. Materials and Methods  
The successive stages of the methodology are shown in figure 1. We used the R environment (R Core 

Team, 2023) for images processing and statistical analysis, TIMESAT for time series processing (Jönsson 

& Eklundh, 2004) and Google Earth Engine (Gorelick et al., 2017) and ArcGIS pro software (Esri Inc., 

2023) for vegetation cover mapping. 

Figure 1 : General workflow 
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2.1. Study area 
The study area is delimited through the borders of the mountainous canton of Valais in Switzerland 

(figure 2). The lowest point is at 372 m above sea level (a.s.l.) at the Geneva Lake and the highest at 

4634 m a.s.l. at the Dufourspitze. The surface of the area of interest is about 5224.35 km2. The Valais, 

located in the western European Alps, comprises several valleys, with the Rhône Valley being the 

primary one. As other mountain regions, the canton is therefore characterized by a high diversity of 

ecosystems due to its diverse geographical features (Körner, 2021). Since no fluxtower is located in the 

Valais, we also studied the area near the Torgnon Fluxnet station, located in the Aosta Valley (IT). It’s a 

grassland situated at 2160 m a.s.l. 

 

Figure 2 : Localization of the canton of Valais (CH) and Torgnon (IT) 
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2.2. Satellite Data 
Satellite Data have been obtained for: (i) the vegetation cover classification, (ii) the comparison of PPI 

and NDVI on the Valais territory, (iii) the correlation analysis with the GPP of the Torgnon FLUXNET 

station. 

For the first cited, we used two high resolution layers of the CLMS (European Environment Agency, 

2020a, 2020b) : Forest type (2018) and Grassland (2018). These are two raster files with a resolution 

of 10x10m characterizing broadleaf forest, coniferous forest for the first layer and grasslands for the 

second layer. For the shrubs mapping, following the methodology proposed by Bayle et al. (in press), 

we used Google Earth Engine (GEE) to compute the median of the Normalized Anthocyanin 

Reflectance Index (NARI) and the Normalized Chlorophyll Reflectance Index (NCRI) for each year 

between 2017 and 2021 for the autumn (September 1st to November 1st) and then computed the 

median of the five years. The detailed methodology is explained in the section 2.3.  

For the second point, we downloaded from the WEkEO platform (https://www.wekeo.eu/) all the PPI 

and NDVI Sentinel-2 scenes for the years 2018 to 2022 (European Environment Agency, 2021a, 2021b), 

for the 4 tiles covering the Valais: T32TLS, T32TMS, T32TMR, T32TLR. It corresponds to Sentinel-2A or 

Sentinel 2-B L1C files, because the L2A data availability on the WEkEO platform was limited (Smets et 

al., 2022). There are 73 observations per year at 5 days of interval, beginning the 05-01-2018, resulting 

in 1460 images per index, 2920 in total (> 600 Go). In addition, for each observation date, a quality 

layer (named QFLAG2) was downloaded. It corresponds to a bitwise encoded status map which 

indicates if the pixel is water or land, cloud, snow or shadow (Smets et al., 2022). 

For the third point, the Torgnon FLUXNET station is located in the area of the T32TLR tile. Therefore, 

no additional satellite data was necessary. 

2.3. Vegetation cover  
Regarding the vegetation cover classification, three vegetation classes have been extracted from the 

High Resolution Layers of the CLMS: deciduous and coniferous trees and grasslands. We used the terra 

package (Hijmans, 2023a) implemented in R to extract the information by the mask of the Valais. The 

limits of the canton have been obtained from the swissBOUDARIES3D product (Swiss Federal Office of 

Topography, 2023).  

To retrieve the shrubs layer, we followed the methodology proposed by Bayle et al. (in press). To do 

so, all the available Sentinel-2 scenes for the Valais for the years 2017 to 2021 from the September 1st 

to the November 1st have been acquired in GEE. In a second step, the Sentinel-2 cloud probability 

product has been applied on every scene with a threshold of 0.65 to remove the clouds and clouds 

shadows. Third, the NARI and NCRI have been computed on the all the scenes and a median per year 

has been extracted. Finaly, we computed a median of the 5 years. 

The NARI is sensitive to the plant canopy anthocyanin content. Using this index, Bayle et al. (2019) 

constructed a methodology to improve the mapping of mountain shrublands. As they noted, 

shrublands are dominated in the European Alps by Ericaceae (i.e., Vaccinium spp. and Rhododendron 

ferrugineum). These species have the particularity to accumulate red anthocyanin pigments in the late 

autumn. This characteristic offers an opportunity to differentiate Ericaceae shrublands from other 

vegetation types. Indeed, as exposed by Bayle et al. (2019), their presence is often underestimated 

and confounded with grasslands. Therefore, using multi-spectral instrument on board the Sentinel-2 

satellites, the accuracy of shrublands mapping could be improved, following this NARI calculation 

(Bayle et al., 2019) : 

https://www.wekeo.eu/


10 
 
 

 

𝑁𝐴𝑅𝐼 =  

1
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+ 
1

ρ Red-edge

 

 

where ρ Green is reflectance in the Green band, ρ Red-edge is reflectance of the Red-edge band. 

The NCRI is a normalized adjustment of the canopy chlorophyll content proposed by Bayle et al. (in 

press). It permits, in addition of the NARI to discriminate forest from Ericaceae-shrubs and grasslands 

(figure 3). NCRI is therefore obtained using the band 5 (Red-edge) and the band 7 (Red-edge 2) from 

Sentinel-2 and is computed as follow (Bayle et al., in press) :  

𝑁𝐶𝑅𝐼 =  

1
ρ Red-edge

−  
1

ρ Red-edge 2
1

ρ Red-edge
+  

1
ρ Red-edge 2

 

where ρ is the reflectance in the respective Red-edge or Red-edge 2 band.  

Following the recommendations of Bayle et al. (in press), we applied a threshold of > 0.325 for the 

NARI and a threshold of < 0.42 for the NCRI to discriminate the Ericaceae-shrublands (see figure 3). 

Figure 3 : Resulting distribution of training samples for bare soil, forests, shrublands and grasslands using 
a discrimination methodology with the combination of NARI and NCRI (Bayle et al., in press) 
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The resulting shrubs layer has a resolution of 20x20 meters. We therefore resampled and reprojected 

this raster layer using the nearest neighbor method to correspond to the 10x10 m resolution of the 

Copernicus High Resolution layers. It is important to note that this methodology doesn’t permit to 

identify non-Ericaceae evergreen shrubs like Juniperus and results in an incomplete mapping of 

shrublands (Bayle et al., 2019, in press). 

The final vegetation cover map was obtained by attributing the corresponding classes to each pixel of 

the Valais in a single raster layer.  

2.4. Vegetation Indices Processing  
Concerning the vegetation indices, a common pre-processing workflow has been applied to PPI, NDVI 

and QFLAG2 images. First, using the raster R package (Hijmans, 2023b) implemented in R, one image 

per index/flag per date has been created by mosaicking the 4 tiles and applying a mean function for 

the overlying pixels. Second, we extracted the values of the 3 variables by the mask of the Valais. 

Afterwards, following the recommendation of Smets et al. (2022), we applied a medium filter by 

masking the overlying PPI and NDVI pixel for the QFLAG2 values 4 to 2048, corresponding to cloud and 

shadow filtering with the addition of surrounding pixels. Finaly, the PPI and NDVI images have been 

cropped to our area of interest, i.e. the limits of the canton Valais.  

2.5. Retrieval of PPI and NDVI values and Processing of Time series for the Different 

Vegetation Classes 
To retrieve the PPI and NDVI values per vegetation classes and per date, we first resampled the 

vegetation cover map using the nearest neighbor method to correspond to the 10 m resolution and 

extension of the cropped PPI and NDVI images. Secondly, we used the zonal function of the terra R 

package (Hijmans, 2023a) to extract the mean PPI and NDVI values per vegetation types for every 

observation. We saved the results in form of dataframes to mobilize them afterwards in the 

construction of time series.  

To further analyze VIs, we therefore built time series and fitted double logistic functions using the 

TIMESAT software (Jönsson & Eklundh, 2002; 2004). Based on Eklund & Jönsson (2017) and two other 

studies using TIMESAT (Karkauskaite et al., 2017; Stanimirova et al., 2019), we first removed the spikes 

and outliers by attributing a median filtering of 1.5. In a second step, we applied two consistent data 

ranges for each VI, respectively -1 to 1 for NDVI and 0 to 3 for PPI. Thirdly, since the noise of VI from 

remotely sensed data is mostly negatively biased, we applied an adaptation to the upper envelope 

with a strength of 3. It consists of a multi-step process to decrease the weight of low data. Finaly, we 

selected a season parameter of 1 to fit one season per year. As mentioned by Eklund & Jönsson (2017), 

the success of the fitting process to the time series is more an art than a science and resides in a visual 

examination, dependent of the type of noise and disturbances in the data of interest.  

2.6. Seasonality parameters retrieval 
We also used the TIMESAT software to retrieve seasonal parameters such as start of the season (SOS), 

peak of the season (POS) and end of the season (EOS). To do so, we applied the method based on the 

seasonal amplitude (Eklund & Jönsson, 2017). The SOS and EOS occur therefore when the fitted curve 

has reached a certain fraction of the difference between the base level and the POS. Based on the PPI 

calibration performed by Tian et al. (2021), we applied respectively thresholds of 0.4 for NDVI and 0.25 

for PPI to retrieve the SOS. For the EOS, we used thresholds of 0.5 for NDVI and 0.15 for PPI.  
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2.7. Ground data 
To assess the performance of the PPI and the NDVI on a specific alpine site, we applied the same 

methodology as Tian et al. (2021) for the GPP/VIs correlation analysis for the FLUXNET station of 

Torgnon in the Aoste Valley. We therefore retrieve the GPP data for this flux tower and then extracted 

the VIs for the 2018-2020 period. To do so, we obtained the GPP data from the FLUXNET network via 

the Integrated Carbon Observation System (ICOS) Data portal (Cremonese et al., 2021). The Torgnon 

FLUXNET data set provides data from 2008 to 2020. According to the methodology applied by Abdi et 

al. (2019) and Tian et al. (2021) regarding the ground data sources, we used the daily 

GPP_DT_CUT_MEAN data set, which is the mean Gross Primary Production using the daytime 

partitioning method and the Constant USTAR Threshold (see Pastorello et al., 2020, for more detailed 

information). We therefore extracted daily GPP data from 2018 to 2020. For the VIs, we constructed a 

buffer of 100 m around the flux tower and then applied the same process as explained in the 2.4. 

section. We further extracted the PPI and NDVI values for each observation. In a final step, we used 

the chart.Correlation function from the PerformanceAnalytics package (Peterson & Carl, 2020) with 

the Spearman method to conduct the correlation analysis. 

3. Results 

3.1. Vegetation cover map 
The resulting vegetation cover map (figure 4) and the derived surface and altitude metrics (table 1) 

show specific vegetation patterns for the Valais. Deciduous trees are concentrated in valleys at lower 

altitude and correspond to a proportion of 9.3 % (i.e., 484 km2) of the entire Valais surface. Coniferous 

trees are mainly situated at a higher altitude and cover 13.8 % of the canton territory, which 

corresponds to 722 km2. Grasslands are the most widespread vegetation class with a 1176 km2 surface 

area, which is equivalent to 22.5 % of the Valais. They are mainly located above the treeline, although 

they are also present in valleys. Their mean altitude is above 2000 m. Shrubs are the vegetation class 

with the higher altitude mean (i.e., 2103 m). They also have the smallest surface area with a proportion 

of 2.5 % (i.e, 133 m) of the entire Valais. Altogether, these four vegetation classes represent 49.1% of 

the canton, the rest being mainly bare rocks, water and built-up lands. 

 

Table 1 : Vegetation classes with corresponding area, proportion of the Valais territory and altitude mean. 

 

 Surface (km2) Proportion (%) Altitude mean (m) 

Deciduous trees 484 9.3 1387 
Coniferous trees 722 13.8 1558 

Grasslands 1176 22.5 2093 
Shrubs 133 2.5 2103 
Other 2713 51.9 2444 
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3.2. VIs time series 

NDVI 

By detailing the NDVI results (figure 5), we note that the raw time series are noisy, particularly in 

winter/spring and for coniferous trees. For deciduous trees, metrics derived from double logistic 

function indicate a mean of 0.54 over the entire period and minimum and maximum values of 

respectively 0.22 and 0.82. In the same ranges, coniferous trees possess a mean of 0.59, with minimum 

and maximum of 0.23 and 0.8. The mean value for grasslands is lower with 0.34, with minimum and 

maximum values of 0.06 and 0.56. Comparatively, shrubs depict a slightly higher mean value of 0.40, 

with 0.04 and 0.77 for minimum and maximum. Regarding the seasonality, we observed a marked 

cycle for all vegetation classes. 

PPI 

For the PPI results (figure 6), raw data are also noisy, but in a restrained way, particularly for 

winter/spring. Regarding metrics derived from double logistic functions, means are equivalent to 0.52, 

0.35, 0.43 and 0.41 respectively for deciduous trees, coniferous trees, grasslands and shrubs. 

Concerning paired minimum and maximum values (min/max), they are of 0.01/1.5 for deciduous trees, 

0.06/0.96 for coniferous trees, 0.01/1.13 for grasslands and 0.01/1.54 for shrubs.  

Figure 4 : Vegetation distribution in the Valais (projection : CH1903+ / LV95) 



14 
 
 

 

Figure 5 : NDVI time series per vegetations classes (top) with raw data (grey) and the double logistic function derived (colored). 
The bottom chart depicts all double logistic functions. 
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Figure 6 : PPI time series per vegetations classes (top) with raw data (grey) and the double logistic function derived (colored). 
The bottom chart depicts all double logistic functions. 
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3.3. Comparison of VIs time series 
Regarding VIs time series comparison, we observe that PPI has a higher amplitude than NDVI for all 

vegetation classes (figure 7). This trend is however less marked for coniferous trees. Additionally, the 

PPI peaks are more pronounced for deciduous trees, grasslands, and shrubs. We also observe a 

different annual shape for the two indices, tighter and more elongated for the PPI. The PPI and NDVI 

indicate different scaled values for coniferous trees. Following a Shapiro test, the time series data are 

not normally distributed. Therefore, a Spearman correlation test has been executed for each pair of 

vegetation classes. Resulting Spearman correlation coefficient (rho) are 0.91 for deciduous trees, 0.87 

for coniferous trees, 0.93 for grasslands, 0.96 for shrubs with a p-value < 0.05 for each one.  

 

3.4. Seasonality parameters retrieval 
The seasonality parameters indicate a consistence between the two indices for the retrieval of SOS 

and EOS for deciduous trees, grasslands and shrubs (table 2). Respectively, the mean differences (PPI-

NDVI) for the SOS are 1.4, 1.4 and 4.2 days and for the EOS -1.4, -9.8 and -11.8 days. For coniferous 

trees, differences are more important and correspond for the SOS to 32.8 days and for the EOS to -12.2 

days. According to these differences, the length of the season retrievals diverges less for deciduous 

trees (-2.8 days), followed by grasslands (-11.2 days), shrubs (-16 days), and coniferous trees (-45 days). 

For the POS retrieval, the differences are important for all the vegetation classes, with an early 

detection from PPI.  

 

Figure 7 : PPI (grey) and NDVI (black) time series for each vegetation class 
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Table 2 : Seasonality parameters per vegetation types in day of the year (DOY) for PPI and NDVI and in day for differences 
between PPI and NDVI 

  PPI  NDVI  Difference (PPI-NDVI) 

Deciduous 
trees 

Year  SOS EOS Length POS  SOS EOS Length POS  SOS EOS Length POS 
2018  113 303 190 183  115 310 195 214  -2 -7 -5 -31 
2019  125 309 184 198  118 297 179 218  7 12 5 -20 
2020  110 295 185 184  109 291 182 197  1 4 3 -13 
2021  129 306 177 196  121 308 187 232  8 -2 -10 -36 
2022  120 301 181 181  127 315 188 223  -7 -14 -7 -42 
Mean  119.4 302.8 183.4 188.4  118 304.2 186.2 216.8  1.4 -1.4 -2.8 -28.4 

 
Coniferous 

trees 
2018  121 291 170 188  128 318 190 233  -7 -27 -20 -45 
2019  129 307 178 202  92 292 200 221  37 15 -22 -19 
2020  107 300 193 189  88 317 229 205  19 -17 -36 -16 
2021  124 299 175 198  97 311 214 232  27 -12 -39 -34 
2022  126 299 173 186  38 319 281 216  88 -20 -108 -30 
Mean  121.4 299.2 177.8 192.6  88.6 311.4 222.8 221.4  32.8 -12.2 -45 -28.8 

 
Grasslands 2018  103 303 200 190  111 309 198 217  -8 -6 2 -27 

2019  104 303 199 203  101 297 196 218  3 6 3 -15 
2020  99 285 186 192  91 301 210 200  8 -16 -24 -8 
2021  96 301 205 203  88 307 219 216  8 -6 -14 -13 
2022  108 291 183 184  112 318 206 217  -4 -27 -23 -33 
Mean  102 296.6 194.6 194.4  100.6 306.4 205.8 213.6  1.4 -9.8 -11.2 -19.2 

 
Shrubs 2018  147 294 147 203  144 301 157 226  3 -7 -10 -23 

2019  158 295 137 212  157 299 142 228  1 -4 -5 -16 
2020  138 288 150 204  120 309 189 214  18 -21 -39 -10 
2021  159 291 132 217  158 296 138 230  1 -5 -6 -13 
2022  145 285 140 195  147 307 160 223  -2 -22 -20 -28 
Mean  149.4 290.6 141.2 206.2  145.2 302.4 157.2 224.2  4.2 - 11.8 -16 -18 

 

3.5. PPI and NDVI correlation with GPP in Torgnon (IT) 
By retrieving the GPP seasonal dynamics in Torgnon, the correlation with NDVI is higher than with PPI 

for the 2018 to 2020 years (figure 8). The results of the normality distribution Shapiro test indicate a 

non-normal distribution for the three datasets. The Spearman correlation coefficients (rho) are 

equivalent to 0.72 for GPP and PPI and 0.75 for GPP and NDVI (p < 0.01). Regarding the data 

distribution, we note a heteroscedasticity for the PPI facing the GPP. For the NDVI and GPP scatterplot, 

we note that high NDVI values tend to reach a plateau. The Spearman correlation coefficient between 

PPI and NDVI is equivalent to 0.9 (p < 0.01). 
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4. Discussion  

4.1. Time series of the PPI and NDVI in mountainous areas for different vegetation types 
Our results suggest that the plant phenology index is a robust remote sensed proxy for time series 

retrieval and phenological monitoring and could be used complementary or as a substitute for NDVI 

in mountainous areas. NDVI is known as an easy to process remote sensing index but with limitations 

in snowed environments and for dense vegetation canopy as evergreen forests (Jin & Eklundh, 2014; 

Jönsson et al., 2010; Tian et al., 2021). The first limit is identifiable with the pronounced noise for 

winter and beginning/ending of the growing season (figure 5). As mentioned before, the length of the 

growing season is one of the main determining factors of productivity for vegetation (Leuschner & 

Ellenberg, 2017) and retrieving the SOS and EOS with precision is therefore of great importance. The 

snow-sensitivity of NDVI is also characterized by high variation at the beginning and end of the snow 

season (Jin & Eklundh, 2014). The second limit is also visible with the saturation for coniferous trees 

at a same level as deciduous trees (approximately 0.8, figure 5 and 7). Tian et al. (2021) found that 

NDVI struggle in retrieving coniferous trees GPP with a resulting negative correlation for the sites 

studied.  

Figure 8 : Correlation chart between GPP, PPI and NDVI with: (a) the distribution of variables of interest by a histogram 
and a density function; (b) the smoothed regression line between each pair of variables; (c) the Spearman correlation 
coefficient between each pair of variables (p < 0.01) 

(a) 

(b) 

(c) 
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The PPI seems to deal with these two problems (figure 6). However, accordingly with previous studies 

(Jin & Eklundh, 2014; Tian et al., 2021), we found that PPI tends to accentuate the signal during the 

peak growing season (figure 6 and 7), which is induced by its logarithmic formula and therefore its high 

sensitivity to variability to NIR and red reflectance differences (Tian et al., 2021).  

Finally, the different shapes of seasonality curve retrieved by the indices (tighter and longer for the 

PPI) can be explained by the greater amplitude of the PPI and its tendency to overestimate peaks, 

coupled with the greater ability of PPI to describe the phenological seasonality of vegetation. It 

contrast with the NDVI which is more sensitive to snow seasonality, which can influence the accuracy 

of seasonal parameters retrieval (Jin et al., 2017; Jin & Eklundh, 2014; Tian et al., 2021). 

4.2. Seasonality parameters retrieval 
By applying different thresholds for seasonality parameters retrieval for PPI and NDVI, we noted a 

consistency between the two indices for SOS, EOS and length of the season retrieval for deciduous 

trees, grasslands and shrubs (table 2). However, this is not the case for the POS and for all coniferous 

trees parameters.  

Regarding SOS and EOS retrieval, we based our methodology on amplitude thresholds, identified by 

Tian et al. (2021), showing the best correspondence between PPI and NDVI and ground-observed 

phenological stages. This method gave us close results between the two indices (except for conifers). 

However, to go further in the phenological signification of these indices thresholds, Jin et al. (2017) 

demonstrated in a precedent study which aimed to disentangle remotely measured plant phenology 

and snow seasonality that NDVI-derived land surface phenology aligns better with snow seasonality 

than with actual plant phenology, in contrast to the PPI which is well aligned with ground phenology 

observation and GPP dynamics. They explained that by the existing linearity between PPI and LAI. As 

defended by Tian et al. (2021), performances of VIs are not only determined by vegetation changes 

identification but also by their robustness against background noise. Overall, the use of PPI 

demonstrates better performance for SOS and EOS retrieving in areas with seasonal snow cover and 

should therefore be considered (Jin et al., 2017; Karkauskaite et al., 2017; Tian et al., 2021).  

Regarding the differences for POS identification, we could legitimately expect that the PPI’s tendency 

to overemphasize seasonal peaks (see 5.1.) have an influence. To solve this issue, Tian et al. (2021) 

mention the possibility to apply an outlier filter. For coniferous trees, the high noisy signal and the 

plateau of the NDVI (figure 5 and 7) are likely due to its known problems in retrieving the signal for 

this class of vegetation (see 5.1.) and influence therefore all seasonality parameters retrieval 

(Karkauskaite et al., 2017). Therefore, the PPI seems also more reliable for dense coniferous forest. 

4.3. Correlation of PPI and NDVI with ground GPP data 
Interestingly and to feed the discussion, the NDVI perform a little better in retrieving GPP signal in 

Torgnon (figure 8). The resulting correlation coefficients are high for both indices (respectively 0.72 

and 0.75 for PPI and NDVI) and are consistent with the existing literature (Tian et al., 2021). It is 

however important to remember that the specific site of Torgnon is a grassland located at 2106 m. It 

would be necessary to repeat the process over more grasslands but also other vegetation types in the 

Alps to assess a representative trend. Indeed, by assessing the performance of VIs over 49 GPP sites 

across Europe, Tian et al. (2021) demonstrate that PPI shows the best consistency in tracking GPP 

seasonal dynamics and have the lowest variation between different vegetation cover. As mentioned 

before, NDVI-derived phenology tends to be more related with snow seasonality, in contrast to PPI and 

its almost linear relationship with LAI (Jin et al., 2017; Tian et al., 2021). Further calibration samples 

over the Alps are therefore needed.  
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4.4. Study limitations 
The accuracy of the study could be improved by using Level-2A Sentinel-2 images (i.e., surface 

reflectance) instead of Level 1-C (top of atmosphere). To do so, we recommend to use the Sen2cor 

program (Main-Knorn et al., 2017) to correct the atmospheric effects from Level-1C images. The pre-

processing of high volume of images used for this study (n = 2920, > 600 Go) was challenging in terms 

of computation time and power. To conduct further studies, such as pixel-scaled spatial analysis, high-

performance computing should be considered. Recent developments of data cubes to produce and 

distribute analysis ready data is also a promising way to reduce the time of pre-processing, which frees 

up time and capacity for more in-depth studies. Our vegetation mapping method doesn’t permit to 

identify evergreen non-Ericaceae shrubs which results in incomplete determination of this class of 

vegetation and its dynamics. More ground data (i.e., GPP and phenological stages) would be needed 

for mountainous areas and ideally for Valais to better assess the performance of the indices in seasonal 

cycle and seasonal parameters retrieval. Furthermore, our study focuses on the behaviour of four main 

classes of vegetation over the entire Valais region. It would be interesting to (i) include more detailed 

vegetation types and (ii) to assess spatial trends at pixel resolution.  

4.5. Contributions and perspectives  
Jin & Eklundh (2014) developed the PPI primarily to improve monitoring of evergreen coniferous forest 

phenology at high northern latitude. However, they noted that PPI is a robust vegetation index for 

tracking vegetation phenology and should therefore be tested across more ranges of conditions. This 

has been done notably for GPP estimation productivity in African semi-arid ecosystems (Abdi et al., 

2019) and by the calibration of the Copernicus Europe-wide phenology dataset (Tian et al., 2021). 

However, to our knowledge, no study has been done specifically for the application of PPI in 

mountainous areas and more specifically in European Alps (e.g., Valais), where NDVI remains the most 

used remote sensing index for vegetation phenology and productivity monitoring. Therefore, the main 

contribution of this study is to assess the potential of PPI in alpine areas, characterized notably by 

seasonal snow cover and the presence of coniferous forest. The results are promising, the PPI provide 

a solid remote sensed opportunity for both phenological and productivity monitoring. Furthermore, 

our study supports that the recently launched Sentinel-2 satellites constellation offers great 

possibilities for more accurate studies with its 10 m resolution and 5-days revisit time, notably for 

complex environments as mountainous areas. To go further we suggest (i) to run more comparisons 

with specific ground data for the Alps and (ii) to execute pixel-resolution analysis for future studies. 

Conclusion 
In this study we compared and assessed the performance of the Plant Phenology Index (PPI) and 

Normalized Difference Vegetation Index (NDVI) in mountainous areas, more specifically in the 

European Alps. We extracted NDVI and PPI values derived from MultiSpectral Instrument on board the 

Sentinel-2 satellites constellation for the 2018 to 2022 years. Regarding seasonal cycle, the NDVI 

retrieves a particularly noisy signal around the snowed season (late autumn to early spring) and for 

coniferous trees. The PPI is less noisy in the early and late season, which could be explained by its low 

sensibility to snow, its almost linear relationship with LAI and its ability to retrieve effective plant 

phenology. However, the PPI tends to overestimate the peak of the season, which could be explained 

by its logarithmic formula and therefore its high sensitivity to NIR and red reflectance difference 

variations. Concerning the seasonal parameters retrieving, we observe consistency between the two 

indices with only small differences for the start and end of the season for deciduous trees, grasslands, 

and shrubs. However, we note important differences for the estimation of the peak of the season and 

for all the seasonal parameters of coniferous trees. When analyzing the correlation with ground-
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measured GPP in an alpine grassland in Torgnon (IT), the Spearman correlation coefficient is more 

important for NDVI (0.75) but is also high for PPI (0.72).  

Our results are consistent with existing literature. It provides new insights for vegetation monitoring in 

complex environments. However, the accuracy of our study could be enhanced by using L2A Sentinel-2 

images, by a more detailed vegetation mapping (e.g., non-Ericaceae shrubs) and especially by the use 

of more ground data to assess in greater detail the performance of indices on different types of 

vegetation in the Alps. By using high performance computing, it would be also interesting to retrieve 

spatial trends at pixel resolution.  

The main contribution of this study is to assess the performance of PPI in mountainous areas in the 

European Alps. This index provides a solid approach to monitor vegetation dynamics, in these areas 

characterized by the presence of seasonal snow and coniferous forest and can be used to overcome 

NDVI limitations. 
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