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Executive summary

Introduction

Fossil fuel production causes a lot of environmental impact and hydraulic fracturing, or “fracking” is among
the dirtiest sources of energy. This drilling technique, which injects pressurised liquid in shale or tight rock
enables the extraction of natural gas or petroleum. The impacts on the landscape are also noticeable as
these extractive pads scatter arid plains with large rectangular areas which can be easily spotted from
the sky. Remote sensing and the technological improvement of satellite imagery are efficient techniques
to detect this land degradation and its expansion.

Objectives

In response to this, being able to map accurately and rapidly the location of fracking areas provides a
cost-efficient monitoring tool. Powerful Geographical Information System (GIS) software now enables
experts to map large areas and classify land use using machine learning. The goal of this study is to use
Google Earth Engine (GEE) to test different classification methods over distinct areas of Texas to assess
which method works best and if a model can be scalable outside of the arid regions of this state.

Method

The proposed method aims to test a pixel-based classification over the entire state of Texas and then
three trial areas located in the Permian basin to test a sharpening of the methodology with the addition
of Object-Based Image Analysis (OBIA). These two classification techniques are further refined with a
mask layer of the Normalized Difference Vegetation Index (NDVI) of the area. The goal of this study is to
accurately classify fracking areas with the random forest algorithm, while figuring out which methodology
provides the best results.

Results

The pixel classification shows better results than the pixel+obia classification regardless of the area of
interest tested with an accuracy of 0.809 and 0.752 respectively. Additionally, results are more precise
for the trial zones than for the full state of Texas which goes against the assumption that the model could
be scaled up.

Discussion

Several challenges can be highlighted in this study. In the pixel classification, roads and fracking pads
get close results due to the similar spectral characteristics they share which reduces accuracy in the
results. The segmentation from the OBIA does not sharpen the model as linear features get broken down
into a lot of segments that prevents representative clustering. Finally, OBIA was not computed on the
entire state of Texas due to computation power limits experimented on GEE. This can be bypassed by
exporting results, which was not the aim of this study, as everything sought to be done on GEE only.




List of important acronyms

BAEI - Built-Up Area Extraction Index

DBSI - Dry Bare Soil Index

GEE - Google Earth Engine: Web-based platform which allows users to access extensive
geospatial data and perform analysis for free. Most users perform land use classification
using the JavaScript language.

OBIA - Object-Based Image Analysis: Method of classification which segments an image
into objects of homogeneous characteristics.

PCA - Principal Components Analyis: Statistical tool capable of identifying the variables
responsible for most variations within a sample.

NDBI - Normalized Difference Built-up Index

NDTI - Normalized Difference Tillage Index

NDVI - Normalized Difference Vegetation Index

RF - Random Forest: Machine learning supervised classification technique that uses various
decision trees.

SNIC - Simple Non-Iterative Clustering is a clustering method which provides a grid of
pixels and then expands from the centre of each pixel adding in the closest spectrally
matching pixels first.
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1. Introduction

Fossil fuel production is a topic scrutinised for different reasons. From sustainable generation
of energy to the rise of geopolitical tensions, to socioeconomic considerations, it has gained a
lot of interest from the general audience through various angles. Even though the reserves of
these non-renewable resources such as crude oil, natural gas or coal are declining, their
exploitation remains largely superior to renewable alternatives at the cost of the environment.
For instance, natural gas exploration not only affects ecosystems through soil and vegetation
loss but also through the contamination of watersheds and the pollution of the atmosphere due
to gas flaring on-site. Scientific methods are necessary to monitor and analyse the impacts of
this non-renewable way to produce energy.

Remote sensing devices have facilitated the understanding of earth’s natural resources
management both from an exploration perspective (e.g., discovery of new oil drilling sites) and
a conservation one (e.g., identification of areas to be protected). Moreover, technical
improvements of satellites have improved the quality, breath and span of aerial imagery,
making earth observations more accurate and detailed. The latter provides valuable data which
can be processed to evaluate natural resources depletion and monitor the impact of extractive
activities on the environment.

Due to an exponential increase in the volumes of spatial data generated (i.e., 10 TB of earth
observations data/day, once the Sentinel satellites are completely operational), experts need
machine learning instruments to analyse it (UK Parliament, 2020). Artificial intelligence
provides undeniable benefits for treating such volumes of information, discovering patterns,
generating predictions of the environment and monitoring certain parameters (e.g., drought
predictions). Presently, machine learning assists environmental experts in a variety of topics,
ranging from weather forecasting, to spotting illegal fishing activities to monitoring land use
alterations (e.g., gas fracking, deforestation), etc.

In that context, the objective of this study is twofold. First, it aims to develop and test the
Random Forest Algorithm on Google Earth Engine to classify fracking areas. Second, it seeks
to compare pixel-based and object-based classification to figure out which technique works
best for this purpose. The hypothesis is that object-based image analysis will be able to sharpen
the pixel-based classification due to the very distinct pattern of fracking areas. The deliverable
highlighted in Table 1 will complement this study for illustrative purposes.



Table 1: Deliverables associated with this study

Script Name Comment Link
Script 1 Pixel-based This script performs | https://code.eartheng
classification on a a pixel-based ine.google.com/87b8
large area: classification over 0782ce407e34779b6
Texas the entire state. 65990283e0d
Script 2. a. Pixel + OBIA - Script 2.a. and 2.b. https://code.eartheng
classification on a are the same. Only ine.google.com/9790
small area: the area of interest 1d0199166ed9727b9
trial zone 1 changes. 6bleff1fd32
Script 2. b. Pixel + OBIA - - https://code.eartheng
classification on a ine.google.com/bcbe
small area: ef55b208b9170cc89b
trial zone 3 9354381181
Script 3 Comparison of This script compares | https://code.eartheng
indices the NDVI, NDBI, ine.google.com/5f26
DBSI, NDTI and b6a73ea5d76b047¢ce
BAEI over one 6¢776d2dc65
reduced Aol
(trial zone 1)to
understand which
index could provide
the best mask.

This project was conducted within The Global Resource Information Database - Geneva
(GRID-Geneva), a partnership between the United Nations Environment Programme (UNEP),
the Swiss Federal Office for the Environment (FOEN) and the University of Geneva (UniGe)
which gathers data scientists specialising in the processing of satellite imagery, modelling of
geospatial data and creation of visualisations platforms. This project was completed as part of
the Complementary Certificate in Geomatics delivered by the University of Geneva.

2. Gas fracking background

In 2021, 82% of the world’s primary energy came from oil, gas and coal (BP, 2022). Even
though demand for fossil fuel should peak before mid-2030, exploration and production are
still growing (IEA, 2022). One technique to recover oil and gas is hydraulic fracturing, or
fracking. This geochemical process consists in drilling into shale rock and injecting a high-
pressure mix of water, sand proppants and chemicals to extract fossil fuels. Even though this
method is banned in several European countries because of the precautionary principle, others
such as the USA still rely on this method to extract fossil fuels.



The impacts of gas fracking are numerous and hit many aspects of the ambient world
(anthroposphere, lithosphere, biosphere, etc). Table 2 below summarises the main impacts
identified in the literature.

Table 2: Compilation of fracking-induced impacts (Meng, 2017)

Area

Main impact only

Explanation

Source

Anthroposphere

Land cover change

Fracking pads and
transportation networks
alter the landscape.
Sites are exploited for a
couple of years only
which emphasises the
spread of fracking sites
over large areas.

Meng (2014)

Atmosphere

Greenhouse effect

Loss of carbon dioxide
sinks due to
deforestation and
methane emissions

from fracking activities.

Karion et al., 2013

Biosphere

Species distribution
and diversity

Fracking sites require a
change of land use
(clear cut of a forest,
paved grasslands, etc)
which destroys wildlife
and ecosystems.

Meng (2014)

Lithosphere

Soil and ground
alteration

Change in
geomorphological
characteristics due to
fluid injections which
can result in changes in
seismic activities.

Ellsworth et al. (2012)

Hydrosphere

Freshwater
consumption

The contamination of
groundwater and
surface water by
hazardous substances
such as benzene and
toluene is one of the
main impacts due to
leakages in the
installations.

Meng (2017)




Various stakeholders require information to better understand and assess the impacts of gas
fracking. Being able to monitor these consequences is key to protect people and the
environment efficiently and to implement measures and policies which better legislate fracking
operations. While several monitoring activities can happen on the ground (e.g., water quality
check), others can be carried out from the sky. In fact, in 2021, the European Space Agency
started using satellites to track methane leakages from fracking installations (ESA, 2021). For
example, satellites with integrated spectrometers, such as Sentinel-5P, can map atmospheric
gases on a daily basis. However, the spatial resolution of this tool is still relatively high (7 km
x 5.5 km for methane). It thus requires the participation of on-the-ground experts and airborne
instruments to effectively map out the impacts of gas fracking.

Remote sensing is a geospatial technology which gathers reflected and emitted radiations of an
area or an object with satellites or airplanes and provides its characteristics without physical
contact (USGS, n.d.). Remote sensing has long been recognized for providing insightful
measures of the environment such as mapping forest fires or tracking land cover changes (e.g.,
expansion of a city, deforestation). Land use mapping is a common application since the
expansion of remote sensing and Geographical Information System (GIS) instruments, the drop
in costs and time-efficiency of the processes (Rawat, 2015). More recently, the increase of
open-source (Landsat and Sentinel) and high-resolution data has facilitated the monitoring of
land cover and land use changes.

Gas fracking monitoring using remote sensing techniques has been well-documented in the
literature. From the observation of land cover ‘s dynamics of shale developments on drylands
(Wang, 2021) to the monitoring of pollutants emanating from hydraulic fracture activities
(Asrar, 2018). However, much less attention has been given to automating the detection of
fracking sites on designated areas to perform real-time monitoring of land use changes. The
company Antarctica Capital (previously Descartes Labs) has developed a machine learning
algorithm capable of detecting well pads in Eastern USA through Google Earth Engine (GEE)
(Thomson, 2021). Their methodology is using Google’s deep learning TenserFlow running
with the Earth Engine Python API where the model trains itself and refine outputs over time.

GEE is a web-based platform created in 2010, which allows users to access extensive geospatial
data and perform analysis for free. Most users perform land use classification using the
JavaScript language (Tassi et al., 2021), however, this platform also supports TenserFlow
workflows using the Earth Engine Python API at a cost.

The aim of this project is to use the free functionalities of GEE with JavaScript to detect well
pads in Texas and compare different classification options. This workflow seeks to reproduce
to some extent the work performed by SkyTruth without the deep learning aspect where the
algorithm is training itself after each iteration to improve its classification. Developing an
algorithm which uses free functionalities seeks to further increase transparency via an
automation of the detection of fracking sites for an easy and open-source access.

10



3. Methods

Study area
Script 1, 2.a., 2.b. & 3 can be found in the annex file.

Figure 1: Study area - Texas, USA (left) and the example of one trial zone (right)

The sites chosen (see Figure 1) for this study can be divided into two categories. The first one
was the large area that served for the test of the pixel-classification (see Script 1 in Annex).
The other ones were the three trial zones that were scattered in Texas and would be used as
experiments for the pixel-based + OBIA classification as can be seen in table 3 below (see
Script 2.a. and 2.b. in Annex).

11



Table 3: Characteristics of the two areas used in this study

Name Large area Trial zones (1,2,3)

Description Texas Smaller areas of Texas
located in the Permian basin

Size of the area (sq.km) 695,662 Approx. 350

Classification performed Pixel-based Pixel-based + OBIA

The state of Texas was selected because of its prevalence for fracking. This method of gas
extraction has been present in the U.S. since 1860 and has extended to many states within the
country (Ridlington et al., 2016). Texas has ranked the highest producers in the country in
terms of well numbers with over 80’000 active wells in 2021 (Caldwell, 2021). Additionally,
the three trial zones chosen are located in the Permian Basin, in Western Texas and occupy
approximately 350 sq.km each (Figure 2). The importance of oil and gas in the Permian Basin
is due to the organisms (e.g., coral reefs which covered the seabed over 265 million years ago).
This sedimentary basin covers more than 220,000 sq.km, is the largest petroleum reserve of the
United States and has produced close to 75 trillion cubic feet of gas since the beginning of its
exploitation (Leder, 2021).
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Figure 2: The three trial zones located in the Permian basin
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Sentinel 2. cloud-free imagery and pre-processing

A Sentinel-2 image from 2022 was chosen because of its 10-m resolution for certain bands
(i.e., blue, green, red) compared to the 30-m resolution of Landsat 8 on GEE. Sentinel-2 was
launched in 2015 by the European Space Agency to collect earth observations at a high
resolution (10-m to 60-m). It provides spectral data over 13 bands and has an average revisit
time of 5 days which provides very accurate and current data (ESA, 2022). The image was
obtained directly from the GEE interface and six bands were used for the analysis as can be
seen in Table 4.

Table 4: Characteristics of Sentinel-2 MSI used in this study

Sensor Period Band Use Wavelength | Resolution | Provider

Sentinel-2
MSI -
MultiSpect

2022-04-
01-2022-
09-15

B2

Blue

496.6nm
(S2A)/
492 . 1nm

10 m

ESA

ral (S2B)
Instrument
, Level-2A B3

560nm
(S2A)/
559nm
(S2B)

Green 10 m

B4 Red 664.5nm
(S2A)/
665nm

(S2B)

10 m

B& NIR 835.Inm
(S2A)/
833nm

(S2B)

10 m

Bl11 SWIR1 [1613.7nm
(S2A)/
1610.4nm

(S2B)

20 m

QA60 Cloud |-

mask

60 m

In preparation of the classification, a cloud mask was created. This serves several purposes
such as: reducing noise, avoiding radiometric distortion of the surface and erasing black pixels
induced by cloud shadows (Puteri, 2020). The ‘QA60° (60-m resolution) band collects both
dense clouds and cirrus and classifies pixels accordingly (e.g., bit 10: mask for opaque clouds;
0: no opaque clouds, 1: opaque cloud presents). This classification is then used to detect these
pixels and remove them with a mask layer.

13



To avoid data gaps that could be caused by the cloud mask, images were selected over a period
of five months and the image collection was then reduced with the median function to create a
new composite. The latter computes for every pixel the median of all values. Finally, the image
was clipped to the region of interest (here: Texas) to save processing power. An explanation of
the main steps of the methods can be found in Figure 3.

14
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Figure 3: Flowchart of the methodology




NDVI and mask

To improve the results of the classification, it was necessary to calculate an index and use it as
a mask to remove certain pixels from the area of interest. This step was crucial to ensure that
the classifier would decipher the difference between the spectral properties of pixels of bare
land and fracking areas to determine which indices was best to use as a mask, a test was
performed on a smaller area of interest (trial zone 1). Nguyen et al. (2021) used the NDBI to
identify bare land features during a fallow period while Osgouei et al (2019) used the NDTI to
distinguish bare land from built up areas. Both indices seemed adequate to test on the arid soil
of fracking areas in Texas. Additionally, NDVI is commonly used as a threshold and due to its
interesting results, it was worth testing it too (Weier and Herring, 2000). Finally, DBSI and
BAEI showed interesting results in the context of arid regions, even when applied to built-up
areas ((Nguyen et al., 2021; Bouzekri et al., 2015) which also supported an inclusion in the
indices test. The script for this step can be found in annex (Script 3).

Table 5: Comparative table of indices

Indices Name Specificity Sentinel _band_calc
ulation
NDVI Normalized Vegetation index for | (NIR-
Difference all regions (Weier RED)/(NIR+RED)
Vegetation Index and Herring, 2000) =(B8-B4)/(B8+B4)
NDBI Normalized Built-up areas index [ (SWIRI-NIR)
Difference Built-up | (Zheng et al., 2021) | /(SWIR1+NIR)
Index =(B11-B8)
/(B11+B8)
DBSI Dry Bare Soil Index | Bare soil index for ((SWIRL1-
arid climatic regions | GREEN)/(SWIR1+G
(Nguyen et al., 2021) | REEN))-((NIR-
RED)/(NIR+RED))
NDTI Normalized Index which can (SWIRI1-SWIR2)
Difference Tillage highlight differences | /(SWIR1+SWIR2)
Index between bare land =(B11-B12)
and built-up areas /(B11+B12)
(Osgouei et al.,
2019)
BAEI Built-Up Area Built-up areas index | (RED+0.3)/(GREEN
Extraction Index in arid region +SWIRI)
(Bouzekri et al., =(B4+0.3)/(B3+B11)
2015)

16



Trial zone 1 was used to test the indices and four classes were designated for the classification
(fracking_area = 1; non-fracking/bare land= 2; roads = 3; vegetation= 4). For each test, the
index was computed and then the latter was used as a band to perform the classification. Results
from the classification can be found in Figure 4.

Indices comparison
0.9700

0.9650 0.9633

0.9625

>0.9600 00567
w .
- 0.9558 ro——
8 0.9550
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e
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NDVI NDBI BAEI NDTI DBSI

Figure 4: Indices comparison on trial zone 1 (see below)

The accuracy of the NDVI index was higher than the other indices so this index was selected
for the classification. In addition, only using the index as a band in the classification was not
sufficient to reduce classification errors. Since it was not necessary for the classification to get
all the different classes. The goal to remove everything that was not bare land from the image
was twofold. First, it would reduce computation power as all the non-relevant pixels would be
masked. Second, it would limit classification errors for the algorithm to only look at the
difference between fracking areas and supposedly bare land. To do so, the NDVI was
calculated, and the results were re-classified as intervals. Only the interval which took into
account the fracking zones was selected to create the mask.

The first step consisted in computing the mean and standard deviation of the NDVI band to
ensure that the interval would be appropriate. The second step was to use the vegetation
classification according to typical NDVI values from (Dazelios et al., 2001) to narrow the range
of the interval to include only bare soil and sparse vegetation. Finally, the third step was to
select fracking areas with the inspector tool on GEE to get the pixel values (NDVI band) of
fracking zones to further narrow down the interval and remove. The final interval ranged
between 0.025 and 0.09. This was an iterative process to find the appropriate thresholds that
would strike a good balance between inclusion of all the fracking zones while still excluding
enough bare land to avoid classification errors afterwards. All the values outside of this range
were masked using the GEE masking function. The outputs of this index test can be found in
Figure 5.
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Figure 5: Classification of indices (1) RGB 432, (2) NDVI, (3) NDBI, (4) BAEIL (5) NDTI,
(6) DBSI

Training areas

The training areas were separated into two subsets. The first one will now be referred to as
the /arge area and the second one will be referred to as the #rial zones as per Table 6 below.
Four categories were created to capture the variety of items that could be found in an arid
region such as Texas: fracking areas, bare land, roads, vegetation (see Figure 6).
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Table 6: Characteristics of the areas used in this study

Name Large area Trial zone 1 Trial zone 2 Trial zone 3

Description Texas Smaller area of Smaller area of Smaller area of Texas
Texas located in the | Texas located in the | located in the Permian
Permian basin Permian basin basin

Coordinates Texas [-102.58262023267683, | [-103.43638635532736, | [-102.32658964193173,
32.370009087637726]; 30.68230000292648]; 31.31075549655534];
5'21227-5075;‘03867267327771 2569]’_ [-103.16859460728048, | [-102.01897245443173,
[102.2784362727159, 30.68230000292648]; 31.31075549655534];
32.48157979972241]: [-103.16859460728048, | [-102.01897245443173,
[-102.58262023267683, 30.797677986617597]; 31.41570608565165];
32.48157979972241] [-103.43638635532736, | [-102.32658964193173,

30.797677986617597] 31.41570608565165]

Specificity - Test zone (h0). Zone without Zone with fracking areas.
This zone contains | fracking areas. Used to test how the
fracking areas. The index and the intervals
indices and the chosen for the index from
mask were zone 1 will work on this
calculated using zone (hl).
this zone as a
reference.

Size of the area | 695,662 Approx. 350 Approx. 350 Approx. 350

(sq.km)

Training zones | 2400, 100, 100, 30, 30, 30 100, 30, 30, 30 100, 30, 30, 30

per category (1-
fracking, 2- bare
land, 3- roads, 4-
vegetation)

approx. 2000,
110

Classification

Pixel-based

Pixel-based,
OBIA

Pixel-based,
OBIA

Pixel-based,
OBIA

For the large area, more than 2000 fracking areas (1400 manually, over 1000 from Descartes
Lab) were created as polygons. The roads were downloaded for certain areas of Texas from
OpenStreetMap (major roads and secondary roads), classified under QGIS and then imported
on GEE and others were directly drawn manually as polylines. Vegetation and bare land were

also drawn as polygons manually and areas that were wrongly incorporated in the NDVI mask
were used to further refine the classification instead of choosing areas that the mask had already

rejected. Fewer zones were selected for the vegetation and bare land category as they were
already well excluded with the mask. However, fracking areas and roads were seen as difficult
to differentiate on the masked composite, which is why these two categories had the highest

numbers of training areas. Finally, due to the large number of training zones drawn, a sample

size of 512 pixels was set to avoid computation power issues.
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The same categories were used for the trial zones (1,2,3); however, fewer training polygons
were drawn as the areas were significantly smaller. Besides, the results from the large area and
the small ones were not comparable because the randomization in the classification of the large
area did not necessarily consider all the training areas from the trial zones.

Finally, a 70|30 (testing|validation) randomisation was applied to all the sites to have a better
machine learning rate (Nguyen et al. 2021) and a confusion matrix was generated to get the
results and accuracy of the classification.

Road
Bare land

Fracking area

Vegetation

Figure 6: Examples of training points used for the classification

Pixel-based classification

For both areas, a pixel-based classification was performed which allocated each pixel to a
particular class. This allowed the separation of pixels labelled as fracking zones from others.
A Random Forest (RF) classifier was applied, which is a traditional machine learning
supervised classification technique that uses various decision trees. The decision trees selected
subsets of the training data and made predictions on the results of the decision trees. Other
supervised classifiers such as Support Vector Machine and Naive Bayes could have been used
but Random Forest is faster and more robust especially if the landscape trained is similar to the
training areas and it is efficient on large datasets and maintains relatively good accuracy even
if some data is missing (Pelletier et al., 2016). Finally, in this analysis, bands B4 (RED), B8
(NIR), B11 (SWIR1) and the NDVI were used, and 300 trees were computed to improve
classification accuracy (Liu & Zhang, 2019).

Despite the benefits of RF, researchers have found that pixel-based classifications can result in
a ‘salt and pepper’ outcome when dealing with high-resolution imagery, which decreases the
accuracy of the classification (Weigh & Riggan, 2010). Object-based image analysis (OBIA)
can provide an alternative to this by integrating shape identification into the classification and
classifying an entire area as a single vector (Gorelick, 2018). Moreover, fracking zones have a
particular square shape which provides an interesting testbed for the OBIA method. It was thus
decided to run a pixel-based classification on the large area and to test a combined method
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(pixel-based classification + OBIA) on the zoom area to see if more accurate results were
achieved. The OBIA method could not be performed on the large area due to the very high
memory and CPU requirements of the classification.

Object-based image analysis

Object-based image analysis has gained rapid momentum in the remote sensing field since the
beginning of the 2000s. This method is based on segmentation (Hay & Castilla, 2008) which
divides an image into regions of homogenous feature (pixels) characteristics and goes further
than pixel-based classification as it considers spatial properties of objects (van der Werff & van
der Meer, 2008). This technique solves the limitation that looking at spectral values only has
by integrating the shape of objects in the analysis. However, a spectral classification or shape-
based approach only is less accurate than a combined spectral-shape classification (van der
Werff & van der Meer, 2008).

The most crucial step of OBIA is the segmentation as it directly affects the quality of the
classification results (Blaschke et al., 2008). In this analysis, the superpixel seed location
spacing, in pixels, was a size of 10. Various segment sizes were considered for the analysis but
10 remained the chosen option due to the small size of the objects considered (fracking zones)
and to strike a balance between over-segmentation of the image and the accuracy of the results.

Superpixels put points on the image (seed grid) and then expand to collect pixels around these
points to get shapes. Superpixels are not the objects but the reduced object. Simple Non-
Iterative Clustering (SNIC) was chosen over Simple Linear Iterative Clustering (SLIC) as it
provides better results (Achanta & Susstrunk, 2017) and is the only segmentation method
available on GEE. SNIC provides a grid of pixels and then expands from the centre of each
pixel adding in the closest spectrally matching pixels first (pixels with the minimum distance,
Gorelick, 2018).

Several parameters were then defined for the SNIC applied on the masked composite as can be
seen in Table 7. For the size, a large value was set to capture all the homogenous areas (as
clusters were relatively homogenous due to the use of the masked composite). Compactness,
connectivity and neighbourhood size were set based on an iterative method to visually capture
what was most accurate and representative of the area as a lack of literature exists on the topic
for the parameter setting of OBIA on GEE. Finally, the seed grid previously generated was
used as an input parameter for the classification. Doing so preserved the spatial features of the
underlying data.
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Table 7: OBIA parameters used in the classification

Parameter Explanation (Achanta and Value
Susstrunk, 2017)
Size Seed location spacing of 20

super-pixels. The seed
represents the centre of a
cluster.

Compactness Compactness factor 5
(distance weighting) (choice
between a purely spectral or
purely spatial segmentation)

Connectivity Connectivity (if pixels touch 8
each other)

Neighbourhood Size Amount to extend each tile 48
(overlap) when computing
the cluster

Scale Resolution 10

After generating the superpixels, clusters and parameters for the classification, spatial
information and statistics were collected. The GEE function ee.reduce.components used the
objects (their shape) and found in each tile the homogeneous pixels and applied a reducer to
everything underneath those pixels. This allowed the collection of the area, perimeter, width
and height of each cluster. Finally, this information was used as a layer in the classifier to
compute the OBIA.

4. Results

Large area - pixel-based classification (script 1)

The first results generated were from the large area (entire Texas) and were further broken
down into three sites. The NDVI results show how the Eastern side of the state has greater
levels of vegetation than the Western side, which is more desertic. The classification results in
Figure 7 show that most fracking areas can be found on the Western part of the state as well as
scattered areas remaining across the state. A lot of areas are not classified on the Eastern part
as the masked composite removed a lot of areas already. In addition, despite a relatively high
accuracy and low standard deviation of the validation points over ten runs (average = 0.862,
stdDev = 0.270) - see Table 8, visual results below show that some results are inaccurate. This
can be attributed to the imbalance between the different categories of training sites. This can
also be also due to a small number of training / validation points, to the actual selection of
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training / validation / test dataset, and many other factor. This is very dependent on the use
case. It also must be noted that the accuracy metric is not always the best choice to assess the
performance of a model.

Table 8: Classification accuracy results for the entire of Texas (large area)

Runl [Run2 |Run3 [Run4 |RunS5 |Run6 [Run7 | Run 8 | Run9 If(l)l n ;&gw;er Std.Dev
Training 0.973 10976 10.977 [0.978 10978 [0.976 |0.977 |0.977 {0.976 |0.973 [0.992 | 0.030
Validation | 0.777 [0.750 |0.744 |0.744 (0.773 |0.753 [0.777 |0.745 10.767 |0.731 | 0.862 | 0.270
real colors RGB 432 NDVI classification

Real colors
RGB 432

NDVI

Classification

OKLAHOM.

Oklahoma City

OKLAHOM

Oklahoma City,

]
High: 0.04

A%

MEXIQUE

Classification
B fracking areas

W bare land

roads

[l vegetation

Figure 7: Large area results (top) and trial zones results (bottom): three close-ups of similar
arid regions distinguishing the NDVI index and classification results.

Furthermore, trial zones show variations in results for the results of the pixel-based
classification. The first trial zone shows relatively accurate results as it is possible to see which
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zones are fracking areas instantly whereas the second and third trial zones display most of the
zone as a fracking zone which is incorrect and is likely due to the pixel values of bare land
being close to the ones of fracking zones. Bare land, roads and vegetation do not necessarily
appear on the final classification (3,6,9) because the composite mask masked most of the areas
that were not fracking zones already, removing pixels that fell outside of the NDVI threshold
set. Besides, trial zone 2 still displays fracking zones even though this area does not have any
fracking sites as can be seen in the real colour image, which shows that there is a high likelihood
that trial zone 3 contains errors that will be discussed below.

Trial zones - pixel-based classification and pixel-based classification + OBIA

RGB 432 - real colors NDVI pixel classification pixel classification + OBIA

Trial zone 1

Trial zone 3

Classification
0 3.5 7 km Low: -0.07 ngh 0.04 . ﬁ'ackjng areas

[l bare land/roads/vegetation

Figure 8: Close-up results of the trial zones (RGB 432, NDVI, pixel classification, pixel +
OBIA classification (from left to right). 4 classes are classified but results are aggregated in
two categories for visualisation purposes to highlight any error in fracking areas
classification.

A second analysis was run only on trial zones 1 and 3 as they contain fracking areas while trial
zone 2 does not. The OBIA was added to the pixel classification. Training points were set in
each area so that the classification was performed on training sites from the corresponding area.
Results show very little difference between trial zone 1 and trial zone 3, as can be seen on
Figure 8, which means that when appropriate training sites were set, classification was more
accurate, regardless of the type of classification performed. In fact, using training sites that
were specific to the interest sites was more accurate which underlines the idea that this
classification of fracking areas was not necessarily scalable.
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Table 9: Trial zones - classification accuracy assessment

Training (validation)-Script 2.a. 2. b and the data for the ten runs can be found in annex

Classification Statistics trial zone 1 trial zone 3

method

Pixel-based Average 0.993 (0.809) 0.995 (0.805)
StdDev 0.004 (0.016) 0.002 (0.012)

Pixel-based+OBIA | Average 0.992 (0.752) 0.998 (0.642)
StdDev 0.003 (0.021) 0.002 (0.026)

Overall, trial zone 1 gave better results than trial zone 3 for the pixel classification (80.9%
and 80.5% accuracy respectively), but by a very small margin (see Table 10). In addition,
trial zone 1 performed better than trial zone 3 for the pixel + OBIA classification (75.2% and
64.2 % accuracy respectively). It is interesting to note that pixel+OBIA classification have
more variation in their results than the pixel classification only which is more homogeneous as
can be seen in Figure 9.

0.850

1
0500 %

0.750

Accuracy

0.700

0.650

0.600

trial zone 1 pixel trial zone 1_pixeltobia trial zone 3 pixel trial zone 3 pixel+obia

Figure 9: Accuracy of classification methods on different trial zones
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These better results for trial zone 1 could be due to the quality of polygons drawn or for the
OBIA classification, it could be attributed to the less homogeneous areas which created high
segmented objects. Nevertheless, the variations between the trial zones remained very minimal
to draw significant conclusions. This better result in trial zone 1 could also be attributed to the
NDVI mask which was based on this area to determine the interval. Finally, in both scenarios,
pixel-based classification performed better than pixel+OBIA, which goes against the
hypothesis that OBIA would sharpen the classification. It also highlights the idea that OBIA is
not a necessity when scaling up the model to a larger area (i.e., entire of Texas).
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Table 10: Confusion matrices for trial zones 1 and 3 (pixel-based pixel-based + obia classification) — Validation data

trial zone 1 - Pixel based

trial zone 1 - Pixel based + OBIA

Non_ Frackin Non_
Frackin_areas|frackin/ Roads |Vegetation [Total [Accuracy rea & fracking/ Roads |Vegetation [Total |Accuracy
bare land cas bare land
Fracking_areas [252 0 39 0 291 186.6% Fracking areas (144 0 43 0 187 [77.0%
Non_fracking/ 1, 51 19 o 79 |64.6% Non_fracking/ 39 19 o 59 166.1%
bare land bare land
Roads 57 2 200 |0 259 177.2% Roads 62 0 86 0 148 [58.1%
Vegetation 0 0 0 0 0 0% Vegetation 0 0 0 0 0 0%
Total 318 53 258 |0 629 |- Total 207 39 148 |0 394 |
Accuracy 79.2% 96.2% 77.5% (0% - 77.8% Accuracy 69.6% 100% 58.1% 0% - 71.5%
trial zone 3 - Pixel based trial zone 3 - Pixel based + OBIA
Fracki (Non_ [Non_
racking_ fracking/ Roads |Vegetation |[Total [Accuracy Fracking_areas|fracking/  [Roads [Vegetation [Total |Accuracy
areas bare land bare land
Fracking_areas (300 2 26 0 328 199.3% Fracking_areas |181 7 77 0 265 [68.3%
Non_fracking/ [Non_fracking/bare 127
On_Taskings o 121 87 |0 208 [58.1% - 5% 65 [0 192 166.1%
bare land land
Roads 21 63 320 |0 404 179.2% Roads 4 108 254 |0 366 169.3%
Vegetation 0 0 0 0 0 - Vegetation 0 0 0 0 0 -
Total 321 186 433 |0 040 |- Total 185 242 396 |0 823 |
Accuracy 93.4% 65% 73.9% [0 - 78.8% [Accuracy 97.8% 52.4% 64.1% |- - 68.2%
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Additionally, confusion matrices show that fracking areas were often confused with roads and
non-fracking areas were also confused with roads but to a lesser extent (86.6% and 64.6%
accuracy respectively for trial zone 1) as can be seen in Table 10. This pattern could be
observed regardless of the classification method used. This is due to spectral information being
relatively similar for roads and fracking areas. Indeed, roads are not paved, they are tracks in
the sand which have pixel values close to the sandy areas around fracking equipment. Besides,
the object-based classification did not manage to remove the roads as linear features can end
up broken in different clusters instead of one long object. This is due to the superpixel grid
which works better for repetitive patterns such as a large area broken down by fields rather
than road networks. The latter also happened on fracking zones as can be seen on Figure 10,
which is also why OBIA did not perform better than pixel-based classification. Finally,
vegetation did not appear on the confusion matrices as the region is arid and most areas have
been masked with the NDVI mask.

Figure 10: From top to bottom: RGB 432, clustering, obia classification (in red, the fracking
area is correct, in black the fracking area is misclassified as non-fracking).

28



5. Discussion and challenges

Methods of classification

In the context of fracking, pixel-based classification provided relatively good results on the
trial zones compared to the entire of Texas and this is largely due to tailored and more accurate
training zones and the use of the masked composite. Using an NDVI mask was convenient in
an area that had very few spectral variations as areas that stood out could be easily excluded
(e.g., vegetation patches). However, the homogeneity between classes (i.e., roads and fracking
areas) was an issue that the mask itself could not solve. Furthermore, using a mask worked well
for a definite area but would not be well scalable as spectral information for the threshold would
vary between areas. Thus, expanding the pixel-based + OBIA classification back to the full
area (entire of Texas) was not performed. First, because of GEE’s computation power
limitation. It could have been overcome by using a lower resolution/bigger tile size, however
the accuracy would have drastically reduced and not been representative of the objects studied.
This is because fracking areas are around 70*70m (4.9 sq.m). Second, because the results on
the trial zones showed that no improvements were made when using OBIA over pixel-based
classification.

Despite initial belief that OBIA would refine the classification, results showed that adding
OBIA to the pixel-based classification did not improve the results but rather worsened them
for the small areas. This was surprising as the object studied (fracking areas) were relatively
homogenous in their squared shape and provided a pattern that was easily recognizable even
with the human eye. However, this relatively poor performance was largely because
segmentation can be inconsistent, and one object can be divided into different clusters. Table
11 below highlights some of the advantages and drawbacks of using one method over the other
in the context of fracking.

Table 11: Main advantages and drawbacks of classification methods for fracking on GEE

Pros Cons

Pixel-based classification No segmentation errors ‘Salt and pepper effect’

Object-based classification | Segments contains not just | Lack of computation power
spectral information but also | Cluster heterogeneity
spatial (e.g., perimeter) and
statistical ones (standard
deviation value)

A scalable methodology?

Results showed that scaling up the methodology to expand it to other states would be feasible
but not without major modifications that would be time consuming. First, it would require
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drawing new polygons specific to the area of interest to ensure that training points are
representative of the spectral characteristics of the new area studied. Second, the NDVT interval
would need to be re-evaluated to fully capture the information of fracking zones and exclude
the areas that could cause misclassification. As the goal here is not to classify the entire zone
but rather only identify fracking areas, using a mask to exclude certain pixels does not affect
the results negatively. However, roads are still problematic due to the similarity of their spectral
characteristics with fracking areas. One way to overcome this and automate the classification
would be to directly download the road network of the area of interest from OpenStreetMap
and either mask them or classify them. This could reduce the noise when classifying the entire
area. The limitation to this is that even though OpenStreetMap provides granular information
some tracks are not drawn on their system due to their small size.

The number of classes used for the classification could also be discussed. It was decided to
choose four classes to take into account fracking areas, bare land, roads and vegetation but
perhaps a different classification could have modified the results if roads and bare land were
under the same class. However, it was interesting to have roads as separate as to test how OBIA
would segment them.

Future improvements

To go one step further and try to perform OBIA again to see if more accurate results can be
achieved, a Principal Component Analysis (PCA) could be performed. The latter would reduce
redundancy in information and increase computation power which would compensate for
GEE's issue. Another way to bypass GEE’s limitation would be to export the results to perform
the OBIA on another software. However, this was not the goal of this research. Finally, to
improve the object-based analysis, a rule could be added to assign pixels to a group if the
majority of the pixels of a segment already fall in one class. Xiong et al. (2017) performs this
operation to classify croplands in Africa. This could overcome the classification errors of
mixing roads and fracking areas due to their similar spectral characteristics.

6. Conclusion

This paper presented the results of a pixel-based classification and an object-based
classification over fracking areas in Texas. Overall, the results for the pixel-based classification
were better than the ones for the object-based classification. Remote sensing and GEE provide
an efficient and quick way to spot fracking areas despite certain accuracy errors. However,
computation power remains a big limit to perform object-based classifications and scaling-up
of models.
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Annexes

Annex 1. Script 3 - Confusion matrix obtained with NDVI

Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land
Fracking a | 129 0 11 0 140 92.1%
reas
Non_frack |0 610 30 2 642 95%
ing/bare
land
Roads 5 9 1122 3 1139 98.5%
Vegetation | 0 13 10 321 344 93.3%
Total 216 162 579 1 2265 -
Accuracy | 96.3% 96.5% 95.7% 98.5% - 96.33%
Script 3 - Confusion matrix obtained with NDBI
Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land
Fracking a | 117 0 23 0 140 83.6%
reas
Non_frack |0 621 18 3 642 96.7%
ing/bare
land
Roads 5 13 1118 3 1139 98.2%
Vegetation | 0 0 11 324 335 96.7%
Total 122 634 1170 330 2256 -
Accuracy | 95.9% 97.9% 95.6% 98.2% - 96.25%
Script 3 - Confusion matrix obtained with BAEI
Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
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land

Fracking a | 124 0 16 0 140 88.6%
reas
Non_frack |0 615 27 0 642 95.8%
ing/bare
land
Roads 2 12 1121 4 1139 98.4%
Vegetation | 0 10 27 307 344 89.2%
Total 126 637 1191 311 2565 -
Accuracy | 98.4% 96.5% 94.1% 98.7% - 95.7%
Script 3 - Confusion matrix obtained with NDTI
Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land
Fracking a | 124 3 13 0 140 88.6%
reas
Non_frack |0 611 29 2 642 95.2%
ing/bare
land
Roads 3 11 1123 2 1139 98.6%
Vegetation | 0 12 25 307 344 89.2%
Total 127 637 1190 311 2265 -
Accuracy | 97.6% 95.9% 94.4% 98.7% - 95.6%
Script 3 - Confusion matrix obtained with DBSI
Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land

Fracking a | 105 0 35 0 140 75.0%
reas
Non_frack |0 618 21 3 642 96.3%
ing/bare
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land

Roads 1 18 1118 2 1132 98.2%
Vegetation | 0 23 8 313 344 91.0%
Total 106 659 1182 318 2256 -
Accuracy | 99.1% 93.8% 94.6% 98.4% - 95.5%

Annex 2. Confusion matrix of the training dataset - script 2.a - pixel based classification

trial zone 1

Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land

Fracking a | 663 0 2 0 665 99.7%
reas
Non_frack |0 168 2 0 170 98.8%
ing/bare
land
Roads 8 0 552 0 560 98.6%
Vegetation | 0 0 0 1 1 100%
Total 671 168 556 1 1396 -
Accuracy | 98.8% 100% 99.2% 100% - 99.5%

Annex 3. Confusion matrix of the training dataset - script 2.a - pixel based classification +
obia trial zone 1

Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land

Fracking a | 687 0 3 0 690 99.6%
reas
Non_frack |0 185 1 0 186 97.3%
ing/bare
land
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Roads 14 0 560 0 574 97.6%
Vegetation | 0 0 0 1 1 1%
Total 701 185 564 1 1451 -
Accuracy | 98.0% 100% 99.3% 100% - 98.7%

Annex 4. Confusion matrix of the training dataset - script 2.b. - pixel based classification

trial zone 3

Fracking are{Non Roads [Vegetation [Total [Accuracy
as fracking/
bare land

Fracking are|666 0 1 0 667 99.8%
as
[Non_ 0 464 2 0 466 99.6%
fracking/
bare land
Roads 3 3 877 0 883 99.3%
[Vegetation |0 0 0 0 0 -
Total 669 467 880 0 2016 -
Accuracy  199.6% 99.4% 99.7% - - 99.6%

Annex 5. Confusion matrix of the training dataset - script 2.b - pixel based classification +
obia trial zone 3

Fracking a | Non_frack [ Roads Vegetation | Total Accuracy
reas ing/bare
land

Fracking a | 680 0 0 0 680 100%
reas
Non_frack |0 480 0 0 480 100%
ing/bare
land
Roads 3 1 897 0 901 99.6%
Vegetation | 0 0 0 0 0 -
Total 683 481 897 0 2061 -
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Accuracy

99.6% 99.8%

100%

99.8%

Annex 6. Script 2.a/2. b. - Pixed-based results + OBIA - accuracy - trial zone 1 and

trial zone 3

Validation trial_zone_1 trial_zone_1 trial_zone_3 trial_zone_3
Small_aoi Small_aoi Small_aoi Small_aoi
(pixel-based) (pixel-based + | (pixel-based) (pixel-based +

OBIA) OBIA)

Run 1 0.779 0.760 0.797 0.627

Run 2 0.811 0.751 0.822 0.588

Run 3 0.824 0.782 0.791 0.685

Run 4 0.813 0.775 0.805 0.652

Run 5 0.822 0.739 0.825 0.628

Run 6 0.825 0.720 0.805 0.651

Run 7 0.822 0.777 0.801 0.657

Run 8 0.789 0.732 0.805 0.664

Run 9 0.811 0.746 0.814 0.644

Run 10 0.792 0.736 0.789 0.627

Median 0.812 0.749 0.805 0.648
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