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Abstract 
Countries of the tropical area have been plagued with forest ecosystem degradation to be 
replaced by a range of anthropic activities such as agricultural expansion, livestock breeding, 
settlements and extractive activities. Concomitantly, epidemiologists have testified for a rise of 
Emerging Infectious Diseases (EID) cases in the tropical areas undergoing forest clearance 
episodes and make the case for their association to forest degradation. In view of the recent 
literature which strives to demonstrate the mechanisms linking forest ecosystem degradation 
and land use change to the emergence of infectious diseases, this research has aimed at 
developing a workflow of analyses to model the risk associated to emerging infectious diseases 
in a context of forest degradation. After modelling areas of potential pathogen spillover events, 
it first consisted in highlighting the areas of interface between forest degradation and anthropic 
activities. The second part of this work produced an index of this infectious risk that combined 
analyses of the hazardous areas and accessibility to health facilities. The analyses were 
conducted with ArcGIS and AccessMod software, on the Equatorial Guinea territory using 
openly available data. Their results enable to locate the areas of interaction between anthropic 
activities and forest degradation within the country. Moreover, they highlight the areas greatly 
exposed to a potential epidemiological threat associated with forest habitat degradation due to 
high proximity to hazardous areas, and the most vulnerable areas to this potential risk due to 
remoteness from health facilities. Finally, the results show that a significant portion of the 
population is located in areas with high level of potential infectious risk associated to forest 
degradation.  
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Glossary 
Ecotone: transition between two adjacent ecological systems (Despommier, Ellis, and Wilcox 
2007; Fonseca 2008; Cain, Bowman, and Hacker 2014). 
 
Spillover: transmission of a pathogen from a reservoir population to a host population (Faust 
et al. 2018). 
 
 
Risk: “probability and magnitude of consequences after a hazard” (Turner et al. 2003) 
 
Hazard: “threat to a system […] threats to a system and the consequences they produce 
(Turner et al. 2003). 
 
Vulnerability: “degree to which a system […] is likely to experience harm due to exposure to 
a hazard” (Turner et al. 2003).  
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Background 
1. Deforestation, fragmentation, ecotones and edge effects  

Over the past decades, deforestation has stroke tropical forests at a drastically increasing pace 
and scale (Achard 2002) and has been identified as a major driver of global environmental 
change, significantly affecting climate, biodiversity and nutrient availability (Walsh, 
Molyneux, and Birley 1993).  
 
Deforestation defined as the “conversion of forest to another land use or the long term reduction 
of tree canopy cover below the 10% threshold”, by the Food and Agriculture Organization of 
the United Nations (FAO) (2010) participates to forest ecosystem and habitat fragmentation 
which itself may be referred to as “any process [resulting] in the conversion of formerly 
continuous forest into patches of forest separated by non-forested lands” (Food and Agriculture 
Organization of the United Nations (FAO) 2007).  
The ecotone is described by Despommier, Ellis, and Wilcox (2007) as a natural or an 
anthropogenic area of transition between two adjacent ecological systems “where biophysical 
factors, biological activity and ecological evolutionary processes are concentrated and 
intensified”. Ecotones may be seen as the transition between forest and non-forested habitat 
(Fonseca 2008; Cain, Bowman, and Hacker 2014), and therefore of the place occurrence of 
edge effects. These edge effects happen consequently to fragmentation and “contribute to 
continuing degradation of forest fragments” (Schelhas and Greenberg 1996) and a cause of 
forest biodiversity reduction (W.F. Laurance and Bierregaard 1997). 
 

2. Health, drivers of emergence, spillover scenarios and mechanisms 
between hosts 

Over the past two decades, the emergence of infectious diseases associated to land use change 
has received increasing attention (N.L. Gottdenker et al. 2014). 
 

A. Deforestation favors disease transmission 
Emerging infectious diseases, that are newly appeared or which incidence or geographic range 
are rapidly increasing (S.S. Morse 1995), may be due to bacteria, protozoans, fungi or viruses 
(“Medical Definition of Infectious Disease” 2017) and may be transmitted directly or via 
vectors (World Health Organization 2017).  
Findings in cross-disciplinary research in medicine, ecology and epidemiology have 
highlighted a rise in Emerging Infectious Diseases cases in the tropical areas undergoing forest 
clearance episodes or fragmentation (B.A. Wilcox and Ellis 2006). They make the case for the 
link between infectious disease spillover and ecological systems’ structure and organization, 
and more specifically deforestation and forest fragmentation (N.L. Gottdenker et al. 2014). 
Anthropogenic ecotones, created by such land use changes, may therefore be seen as areas of 
interface between intact forests and anthropic activities where ecotonal processes favor 
pathogen spillover  (Despommier, Ellis, and Wilcox 2007). 
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B. Diseases which emergence was traced back to deforestation and forest 
fragmentation  

Although previous findings in terms of the causality of land use change in infectious disease 
emergence may be contrasted (D. Valle and Tucker Lima 2014), recent researches highlight 
recurrent infectious diseases and anthropic activities associated to forest habitat degradation 
and land use change.  
The most documented infectious diseases include zoonoses for instance due to Escherichia coli 
bacteria (T.L. Goldberg 2008), Ebola virus in African countries (J. Olivero et al. 2017; M. Rulli 
et al. 2017), Henipavirus in Southeast Asia and Africa (Epstein et al. 2014; O. Pernet et al. 
2014; Chua 2003), vector borne diseases such as Chagas disease caused by Trypanosoma cruzi 
in Africa (E.N. Vianna et al. 2017), Cutaneous Leishmaniasis caused by Leishmania pathogens 
in Southern American countries (Wolfe N et al. 2000), Buruli ulcers due to Mycobacterium 
ulcerans (Morris et al. 2016) in Oceania, Africa and Latin America (Darie 2003), and varied 
forms of Malaria caused by Plasmodium vivax (N.M. Wayant et al. 2010; Chaves et al. 2018) 
or Plasmodium falciparum (Chaves et al. 2018) vectored by Anopheles darlingi mosquitoes 
(A.Y. Vittor et al. 2009) and which emerged in African, Southeast-Asian and South American 
countries (B.A. Wilcox and Ellis 2006). 
 

C. Anthropic activities involved  
The findings of researches which have intended to identify the drivers of such diseases’ 
emergence point to a range of anthropic activities taking place where forests have been cleared, 
fragmented or in the fringes of the remaining fragments (N.L. Gottdenker et al. 2014). 
Agricultural expansion (T.L. Goldberg 2008; J.A. Patz and Olson 2016), livestock breeding 
(Goldberg 2008; Pernet et al. 2014), human settlements in fragmented forest margins (M. Rulli 
et al. 2017; T.L. Goldberg 2008) leading to increased population densities (M. Rulli et al. 2017) 
and facilitated disease transmission (N.L. Gottdenker et al. 2014) stand as repeatedly identified 
drivers. Other anthropic activities, such as extractive industries like logging and mining (T.L. 
Goldberg 2008), road and dam building (J.A. Patz and Olson 2016), irrigation and  urbanization 
(N.L. Gottdenker et al. 2014), as well as bush meat hunting (Wolfe N et al. 2000; O. Pernet et 
al. 2014; A.K. Wiethoelter et al. 2015) were also identified.  
These activities influence the transmission of diseases between wildlife animals and humans 
but also between wildlife and domestic animals, ultimately affecting human health (Faust et al. 
2018). Wildlife-livestock interfaces are critical in disease ecology and may have direct 
influence on human health (A.K. Wiethoelter et al. 2015). They have already been identified as 
drivers of Infectious Diseases emergence such as the 1998 outbreak of febrile encephalitis in 
Peninsular Malaysia due to Hendra virus spread (Chua 2003). 

D. Locating the places with greater spillover risk 
Different levels of forest habitat degradation have been associated to infectious disease spillover 
events. On the one hand, Faust et al. (2018) have identified places which have undergone 
intermediate levels of land conversion as the loci of highest pathogen invasion and probability 
of individual infection. Some diseases such as Ebola tend to be associated with areas of high 
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levels of dense forest fragmentation (J. Olivero et al. 2017; M. Rulli et al. 2017) rather than in 
deforestation hotspots, which are instead more opportune for the development of vectors of 
diseases like malaria when replaced by secondary growth vegetation such as shrubs and 
cropland (A.Y. Vittor et al. 2009).  
Because they concentrate and intensify biophysical factors, biological activity and ecological 
evolutionary processes, ecotones, particularly the anthropogenic ones, constitute breeding 
grounds for disease transmission (Despommier, Ellis, and Wilcox 2007). 

E. A diversity of mechanisms 
The mechanisms linking the effect of land conversion and pathogen transmission are complex 
(Burkett-Cadena and Vittor 2018) and may be explained as the “[changes in] the abundance, 
demography, behavior, movement, immune response and contact between host species and 
vectors as well as [alteration of] host community” (N.L. Gottdenker et al. 2014). Therefore, 
pathogen spillover results from a change in ecological conditions followed by increased 
interactions between species and of the exposure of novel host (K.A Murray and Daszak 2013). 
  
Changing the vector/host/reservoir’s ecology 
First of all, deforestation and forest fragmentation is likely to alter the vector’s, the host’s or 
the pathogen’s ecology, niche or community composition (Morris et al. 2016; N.L. Gottdenker 
et al. 2014) and sometimes result in the loss of reservoir or host species (O. Pernet et al. 2014) 
or of their composition (M. Rulli et al. 2017), core species predator as a consequence of habitat 
destruction and which in turn decreases the natural regulation capacity of hosts and reservoirs 
decreases (E.N. Vianna et al. 2017). Consequently, reservoir and hosts species concentrate in 
the remaining fragments of forest (T.L. Goldberg 2008) and in ecotones, where they become 
hyper abundant, resulting in increased pathogenic potential (Despommier, Ellis, and Wilcox 
2007), usually where anthropic activities are also taking place. 
 
Creating suitable habitats for vectors 
Deforestation and forest fragmentation contribute to creating suitable habitat for vectors which 
in turn changes their spatial distribution (N.L. Gottdenker et al. 2014) from sylvatic to anthropic 
biomes (E.N. Vianna et al. 2017) as they search for resources (T.L. Goldberg 2008; Epstein et 
al. 2014; O. Pernet et al. 2014) due to habitat destruction.  
Moreover, Burkett-Cadena and Vittor's (2018) findings highlight how the vectors of human 
pathogens are more abundant and even favored by deforestation. This may be due to the 
increase of forest edges preferred for instance by Anopheles Darlingi (Chaves et al. 2018), 
particularly in the aquatic habitat of the interface (Burkett-Cadena and Vittor 2018), to the 
increase in surface temperatures due to the loss of forest cover (Burkett-Cadena and Vittor 
2018; E.N. Vianna et al. 2017) or the proximity of human settlements (A.Y. Vittor et al. 2009) 
where the vectors finally adapt (Burkett-Cadena and Vittor 2018). Such conditions are likely to 
create larval breeding sites and increase their biting rate (ibid) as shown for one malaria vector 
(Anopheles darlingi) (A.Y. Vittor et al. 2009), and several Chagas disease vectors 
(trypanosoma) (E.N. Vianna et al. 2017). 
 
Increased interspecies contact 
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Usually, deforestation and fragmentation are followed by activities likely to increase human 
exposure to pathogens or vectors. As a matter of fact, deforestation and forest fragmentation 
create interfaces of frequent interspecies contacts and interactions (Wolfe N et al. 2000), that is 
where humans, domestic animals and wildlife interact and where pathogens that used to be 
contained in forest ecosystems spillover to anthropic ecosystems (Faust et al. 2018; 
Despommier, Ellis, and Wilcox 2007). The mechanisms by which deforestation creates 
conditions where a novel host (with no prior exposure) is exposed to a diverse pool of pathogens 
(K.A Murray and Daszak 2013) may be exacerbated in areas with high population densities 
(Jones et al. 2008). 
 
Emerging Infectious diseases associated to land use change pose a significant threat and public 
health concern in countries of the tropical area, where deforestation dynamics are currently the 
greatest (Hansen et al. 2013) and where the presence of dense forest biome and humid climate 
exacerbate the issues aforementioned (Colfer et al. 2006). Besides, Western Africa has been 
identified as a major hotspot both in terms of Emerging infectious diseases events, with 
particular threat from zoonotic pathogens from wildlife and vector borne pathogens (Jones et 
al. 2008), and forest habitat degradation (Global Forest Watch 2018). This particular area 
therefore constitutes a relevant case study for the issues related to the interactions between 
health and ecosystem degradation, particularly those triggered by forest loss habitat.  
 

3. Accessibility matters 
Accessibility to health care is critical in outbreak control efforts, where inadequate access to 
services, products or technologies can be responsible for a greater number of cases and deaths 
as it was for instance the case for Ebola Virus Disease (D.L. Heymann et al. 2015; L.O. Gostin 
and Friedman 2015). 
However, little research has intended to model the exposure to this infectious risk under the 
angle of travel time to the areas with potential risk of spillover such as used by Ouma et al. 
(2018) to map the accessibility to emergency facilities in Africa.  
Varied tools provided by Geographical Information System (GIS) technologies have been used 
in some of the research dealing with the infectious risk associated to land use change in order 
to map hotspots of this risk at different scales (Allen et al. 2017; D. Valle and Tucker Lima 
2014) or to visualize the exposure to these areas within buffers (Morris et al. 2016; J. Olivero 
et al. 2017), that is in terms of distance to the risk area. 
 

4. The concept of risk 
Risk, and more precisely environmental risk may be conceptualized as the interaction between 
hazard, vulnerability and exposure (IPCC 2014). It may be defined as the “probability and 
magnitude of consequences after a hazard” (Turner et al. 2003). Hazards represent the threats 
to a system and the possible consequences produced (ibid). The interrelated concepts of 
vulnerability and exposure are social and economic processes (IPCC 2014). As a matter of 
fact, vulnerability corresponds to “the degree to which a system […] is likely to experience 
harm due to exposure to a hazard” (Turner et al. 2003).  
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5. Equatorial Guinea 
Equatorial Guinea is a West African country with a population reaching 1.3 million inhabitants 
in 2017 (Trading Economics 2018) and which economy mainly relies on oil extraction (African 
Development Bank, Organisation for Economic Co-operation and Development, and 
Development Centre 2003). In 2014, 98% of the country was still covered with tropical 
rainforest, and therefore constitutes one of the biodiversity conservation targets of IUCN’s West 
and Central Africa (WCPA) programs.  Over the 2004-2014 decade, the country has faced a 
yearly rate of degradation of 0.9% and of deforestation of 0.1%, mainly for timber exportation 
towards Asia and Europe and agricultural expansion (Central African Forest Initiative n.d.). 
The government has however committed to implementing REDD+ strategy to address the 
drivers of deforestation and forest degradation (ibid).  
Although infectious disease emergence associated to land use change has not specifically been 
studied, the country was identified as a potential risk area for yellow fever (F.M. Shearer et al. 
2018), Ebola and Marburg fever epidemic and outbreak and reservoir (Pigott et al. 2017, 2014), 
and harbors environment suitability for Zika virus (J. P. Messina et al. 2016).  
For the reasons mentioned above, and the fact that it is a relatively small country, Equatorial 
Guinea was thought to be a very good candidate to achieve the two main research aims of our 
study; 

Research Goal 
(1) Mapping the areas of interface between forest degradation and anthropic activities, as they 
can be potential areas of spillover occurrence, (2) Identifying the areas where the population 
would be most vulnerable to the potential risk of Emerging Infectious Disease associated to 
forest habitat degradation by incorporating realistic measures of both proximity to potential 
hazardous areas and accessibility (or lack thereof) to emergency facilities.  
Answering Allen et al.'s (2014) call for an analysis of the spatial distribution of interfaces 
associated with potential spillover risk and for interdisciplinary and ambitious approach to 
foster pandemic control, this research aims at producing a complete workflow based on high 
resolution openly available data, to support decision making in land use planning and public 
health surveillance.  
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Data 
1. Equatorial Guinea  

A mask was created to define the extent of the Equatorial Guinean territory and was used to 
clip out all other data sets. The country boundaries were downloaded from the GADM website 
(GADM 2018). 
 

2. Deforestation 
Deforestation data for years 2010-2014 and 2001-2005 was obtained from the dataset provided 
by the University of Maryland (Hansen et al. 2013) available from the Global Forest Watch 
portal (http://data.globalforestwatch.org). This raster data locates the deforested pixel and 
indicates the year of deforestation at a 30m resolution.  
  

3. Landcover 
The land cover raster was obtained from the Copernicus Global Land Service (Jacobs and Smets 
2017). This 100m resolution raster file provides information about the different categories of 
land cover in Equatorial Guinea: evergreen broadleaf closed and open forest, deciduous 
broadleaf closed and open forest, herbaceous wetland, temporary and permanent water bodies, 
herbaceous wetland, urban areas, shrubs, herbaceous vegetation, cropland and open sea areas.  
Cropland data used in the analyses described here below were extracted from this dataset.  
 

4. Population 
The 2015 adjusted population raster dataset (100m) was obtained for Equatorial Guinea on the 
WorldPop website, modelled with peer-reviewed statistical methods “to transform and 
disaggregate population counts at administrative unit levels to 100x100m grid square level, 
exploiting relationships with spatial covariate layers from satellites and other sources” 
(Worldpop 2013). The adjusted to UN estimates population count map indicator was used.  
 

5. Settlements 
The shape point file of “populated places (settlements)” was retrieved from the humanitarian 
data exchange website from the United Nations office for Coordination of Human Affairs 
(OCHA) (National Geospatial-Intelligence Agency (NGA) 2011). This dataset includes 
information about the location and name of the 2049 settlements.  
 

6. Livestock 
Livestock raster datasets (1000m) for the year 2006 were obtained from the Geo Wiki portal 
(T. Robinson and Conchedda 2014a, 2014c, 2014b) for cattle, goat and sheep densities, and 
were combined together.   
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7. Logging concessions 
The point shapefile dataset of the logging concessions (Equatorial Guinea Ministry of 
Agriculture and Forests and The World Resource Institute 2013) was downloaded from the 
Global Forest Watch portal (http://data.globalforestwatch.org/datasets) and includes 
information about the company holding the concession, the date of exploitation, the 
localization, the area and the state of exploitation.  
 

8. Waterways 
The line shapefile dataset of waterways in Equatorial Guinea was downloaded from the 
humanitarian data exchange website from the United Nations office for Coordination of Human 
Affairs (OCHA) (Open Street Map 2018b)and contained information about river features.  
 

9. Hospitals 
The 2017 hospital shape point file for Equatorial Guinea was obtained from (Ouma et al. 2018), 
and contained 18 public facilities “targeted at a broad range of emergency or referral care to the 
general population” (ibid). 
 

10. Roads  
The road shape files were obtained from Open Street Map website (Open Street Map 2018a) 
and from (Ouma et al. 2018) for Equatorial Guinea, and were merged together. It includes 
information about the type of roads of the feature line dataset.  
 

11.  Digital Elevation Model (DEM) 
The 30m DEM tiles for Equatorial Guinea were downloaded from the USGS website 
(https://earthexplorer.usgs.gov/), combined together, and clipped on the mask for Equatorial 
Guinea.  

Methods 
The detailed processes of the developed workflow can be found in appendix 1.  

1. Areas with greater potential for spillover events occurrence 
In order to translate the land use change associated with greater spillover risk described by the 
literature, the beginning of this workflow has worked on modelling forest habitat degradation 
through the identification of deforested and fragmented areas.  

A. Deforested areas 
The Global Forest Watch provides fine resolution (30m), locally relevant records of forest 
change since 2000, from Earth observation satellite data (Hansen et al. 2013). The “Global 
forest cover loss 2000-2014” dataset maps deforestation considered as “a stand replacement 
disturbance or a change from a forest to non-forest state” (ibid).  
Forest loss data were extracted from this dataset for the periods 2001-2005 and 2010-2014.  
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A part of this work has aimed at mapping the interface between the areas of forest degradation 
and anthropic activities. Therefore, the periods of study of these interface need to precede the 
dates (2006 and 2015) of the available data of proxies for anthropic activities (human and 
livestock population, land cover, settlements, etc…), as described hereafter. 
Deforestation was analyzed over a period of five years (2001-2005 and 2010-2014) in order to 
reflect the array of possible ecological and epidemiological mechanisms described in the 
literature depending on the infectious disease studied; 4 years for malaria in (N.M. Wayant et 
al. 2010), 5 years for malaria in (K.M. Fornace et al. 2016), within the same year as 
deforestation for Ebola in (J. Olivero et al. 2017; M. Rulli et al. 2017). 

Another subset of deforestation events was extracted for the period 2001-2014 in order to 
compare them with logging concessions data which also range across this timeline. 
 
Binary masks of deforestation were created by assigning a common value to all the deforested 
pixels. These masks were resampled using a majority technique in order to match the resolution 
of the proxies for anthropic activities; 925.18m for the livestock densities and 92.52 for all the 
other layers. These resolutions were chosen to match the population and the livestock layers’. 
The majority technique of resampling was chosen because it minimized the pixel loss between 
the original and the final resolutions.  
All these processes were executed using ArcGIS 10.3 (http://desktop.arcgis.com/en/). 

B. Ecotones and areas of transitional fragmentation 
In order to enhance areas with frequent interactions and interspecies contact, the second process 
consisted in modeling anthropic ecotones (Despommier, Ellis, and Wilcox 2007), in other 
words forest margins, with areas of transitional fragmentation, as described as “areas of 
intermediate level of habitat loss” in (Faust et al. 2018). 
These landscape elements were processed with the Guidos toolbox (P. Vogt and Riitters 2017), 
a publicly available software which enables creating maps of image pattern and object attributes 
from a reclassified land cover. The software was used to conduct a Morphological Segmentation 
of binary Patterns (MSPA) (P. Soille and Vogt 2009) and a fragmentation analysis (P. Vogt and 
Riitters 2017).  
The MSPA processing first consisted in identifying areas of interspecies contact, which 
correspond to forest margins; forest islet, loop and branch, bridge, perforation and edges such 
as described in Figure 1. Faust et al.'s (2018) methodology considered the area within 200m on 
each side of the forest edge. This was reflected by setting up the edge width to 5 pixels, in order 
to span equally on both sides of the originally 1-pixel wide forest edge.  
 
Edge widths were set up to 5 pixels (500m on our map) to reflect  
 
The fragmentation analysis developed in Vogt and Riitters (2017) consisted in identifying the 
different levels of fragmentation of an area based on spatial density of forest cover. The smallest 
observation window available (7x7 pixels) was used in order to get a localized assessment of 
the fragmentation and best reflect the creation of interspecies contact at the finest scale. The 
analysis was conducted on a recoded land cover layer (4 bytes) to indicate foreground, 
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background and non-fragmenting background pixels. This process enabled to assess the 
fragmentation level of the country and extract the areas with transitional levels of fragmentation 
(between 40 and 60%). 
Both the MSPA and the FAD processing were based on the 2015 land cover layer.   
 
 
 
 
 
 

 
Figure 1:  MSPA: Overview of the various foreground and background MSPA, extracted from Vogt (2018) 

2. Areas of interfaces: hazardous areas and anthropic activities 
Interface between each risk defined area (deforested or anthropic-ecotones) and anthropic 
activities were modelled in ArcGIS 10.3 (http://desktop.arcgis.com/en/) using zonal statistics 
coverage tools and raster calculations. They aimed to highlight areas that maximize interactions 
between deforestation or fragmentation and anthropic activities. All these analyses were 
conducted with the 2000-2014 deforestation areas except for the livestock data for which the 
2001-2005 deforestation areas were used since the data relative to these densities were only 
available for 2006. Prior to the interface analyses, the proxy layers had been resampled to match 
the population density layer’s, using the nearest neighbor technique.  
 

3. Exposure to hazardous areas 
This part consisted in realistically modelling the hazardous areas with potential spillover risk 
by considering time of travel through conducting a cost distance analysis and zonal statistics in 
ArcGIS 10.3 (http://desktop.arcgis.com/en/) and get a realistic extent of accessibility to these 
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hazardous areas. The task consisted in three successive steps; the creation of a cost raster in 
AccessMod, the cost-distance analysis and the exposure. 

A. Creation of a cost raster 
A merged land cover comprising the land cover layer, the road network, the hydrographic 
network (rivers and water bodies) was created in AccessMod ver.5 (Ray and Ebener 2008, 
https://www.accessmod.org). The software enabled to attribute priorities between road types 
and the other elements of the landscape and to correct topological errors (removing artefacts). 
The produced merged land cover was exported in Arcmap in order to assign to each pixel value, 
the time needed to cross the cell, depending on the speed of travel through the different elements 
of the landscape. 
Table 1 below describes the travel scenario that was applied to the cost raster. 
 
The speed on major and minor arterial, primary and secondary roads were drawn from (Ouma 
et al. 2018). The other speeds were inspired from (World Health Organization 2013) and (World 
Road Transport Organisation 2018). Considering an average walking speed of 5km/h for an 
average adult, each landscape element was assigned a scaled down average walking speed, 
depending on the relative difficulty to walk through it. Waterways and permanent water bodies 
were considered as barriers to travelling (unless a road crosses over) and were assigned a 
NoData value by Accessmod in order to translate infinite costs of travel. 
 
Table 1: Travel scenario 

Element Speed 
(km/h) 

Mode of 
transportation 

Time to travel 
across the 92.52m 
cell (min) 

Road types 
 
Tertiary road 20 Motorized 0.2776 
Major arterial 60 Motorized 0.0925 

Minor arterial 60 Motorized 0.0925 
Primary highway 80 Motorized 0.0694 
Secondary road 70 Motorized 0.0793 
Motorway 100 Motorized 0.0555 
Landscape elements (from the 2015 land cover) 
 
Shrubs 4 Foot  1.3878 
Herbaceous vegetation 5 Foot 1.1102 
Cropland 4 Foot 1.3878 
Urban 5 Foot 1.1102 
Permanent water bodies 0 None Infinite 
Temporary water bodies 3 Foot 1.8504 
Herbaceous wetland 3 Foot 1.8504 
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Evergreen broadleaf closed 
forest 

2 Foot 2.7755 

Deciduous broadleaf closed 
forest 

2 Foot 2.7755 

Evergreen broadleaf open 
forest 

4 Foot 1.3878 

Deciduous broadleaf open 
forest 

4 Foot 1.3878 

 

B. Cost distance assessment 
This step consisted in conducting a cost distance analysis in ArcGIS 10.3 
(http://desktop.arcgis.com/en/) on the hazardous areas, considering the cost of travelling across 
the landscape to the edge of the hazardous areas. 
This was performed both on the deforested and the ecotone layers. The results of this analysis 
were two travel time maps were the value on each pixel indicates the travel time to the edge of 
the nearest hazardous area. 

C. Population exposure assessment 
This step consisted in summing (with the zonal statistics tool) the population within each class 
of cost distance in order to assess the proportion of the population   located in, close or remotely 
from the hazardous areas.  
 

4. Accessibility analysis to hospitals 
The vulnerability of the population to the infectious risk was translated with an accessibility 
analysis to the nearest hospital facilities. It was conducted in AccessMod ver. 5 (Ray and Ebener 
2008, http://accessmod.org) and consisted in assessing the accessibility of the population at risk 
to the hospital facilities on the whole territory. Similarly to the cost distance analysis to surface 
areas performed in ArcGIS (http://desktop.arcgis.com/en/) as described in the previous section, 
the accessibility analysis in AccessMod consisted in translating the spatial distribution of travel 
time across the landscape and to the nearest hospital facilities, in order to model their 
accessibility for the population. This AccessMod tool uses the merged land cover produced and 
described in the previous section, the vector points layer of hospital facilities and the travelling 
scenario described in Table 1. The analysis may either be anisotropic (reflects the influence of 
slope on travel time) or isotropic (ignores it). In this analysis, the travel time was computed 
over the whole territory and without considering the effect of slope in order to enable the 
comparison with the analysis conducted in Arcmap, which couldn’t take it into account 
similarly.  
The result of this analysis produced a raster map of the travel time to the 18 hospital facilities 
which was classified into 6 categories of travel time and intersected with the settlements layer 
to give a visual representation of their proximity to the nearest hospitals as a function of travel 
time.  
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5. Representing the level of risk through heat maps 
The final step of the workflow consisted in creating an index of the infectious disease risk 
associated with forest habitat degradation based on the cost distance and the accessibility 
analyses described here before. 
The values of accessibility to hospitals were inverted so that the direction of their variation 
would match those of the cost distance to hazardous areas maps; a decrease in the index 
translates into an increase of the risk.  
Then, cost distance raster values and the inverted accessibility raster values were normalized 
according to the methodology developed by European Commission, Organisation for Economic 
Co-operation and Development, and SourceOECD (Online service) (2008).  
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑖𝑛𝑑𝑒𝑥 = 	
𝑥 − 𝑥012
𝑥 − 𝑥034

 

 
This simple normalization enables to bring the information on the cost distance to hazardous 
areas and the accessibility to hospitals to a comparable range and to combine them together. 
However, inverting the values of accessibility led to creating an index with very small values 
(almost all beneath 1) which impairs the effect of accessibility to hospitals to be reflected in the 
final EID risk index, when combined to the values of cost distance to hazard areas. The 
normalized values of accessibility were therefore multiplied by a factor of 10 in order to offset 
the effect induced by the inversion.  
Finally, the normalized rasters were summed together and represented in a heat map classified 
in 5 categories of risk (with the smallest values expressing the highest EID risk) with a 
geometrical interval in order to appreciate small variations of risk throughout the landscape.  
A final zonal statistics was carried out to sum the population in each of the risk category and 
appreciate the distribution of the population within these categories.  

Results 
1. Hazardous areas modelling 
1. Deforestation 

Forest loss events from 2001 to 2005 and from 2010 to 2014 can be observed in Figure 2 and 3 
respectively. In the first period, the deforestation covered about 2.5% of the territory, contra 
7.5% in the 2010-2014 period, which highlights an intensification of deforestation dynamics 
between the two periods of time. The distribution of these events enhances areas of concentrated 
anthropic activities in urban areas and the construction of roads between them.  
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A 

Figure 2: Forest loss events (deforestation) between 2001 and 2005, in (A) the mainland region of Equatorial Guinea, (B) in Bioko island, 
with a 925.18m resolution. 

Figure 3: Map of forest loss events (deforestation) between 2010 and 2014, in (A) the mainland region of Equatorial Guinea, (B) in Bioko 
island, with a 92.52m resolution. 
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2. Ecotones 

 
 
 
 
Figure 4 enables to visualize a possible way of modelling the areas of increased inter-species 
interactions. According to this model, these areas covered about 60% of the country in 2015 
and were mainly represented by perforations, bridges and loops. Forest fragmentation and 
resulting areas of increased interspecies contact are spread out over the country, which leads to 
some overlaps with the deforested areas of 2010-2014. Most perforation areas and bridges are 
located in the Northeastern part of the country, the center and the Southwestern part.  
 

2. Interfaces 
1. Population density 

Figure 5: Population density in areas deforested between 2010 and 2014, in Equatorial Guinea mainland (left), the city 
of Djibloho (left). 

Figure 4:Mapping of ecotones, composed of transitional areas of fragmentation (between 40 and 60%)  and forest 
margin elements identified by the MSPA analysis considering 500m forest edges, based on the 2015 land cover,  in (A) 
Equatorial Guinea mainland, (B) the city of Djibloho, where anthropic activities are concentrated. 

A 
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The analyses showed that about 19.3% of the 2015 population of Equatorial Guinea was located 
in areas which had undergone deforestation in the previous 5 years, and 40.55% was located in 
ecotones in 2015. Places where the highest population densities in deforested areas can be found 
correspond to the cities of Bata, Evinayong, Ebebiyin, Mongomo and the capital of Malabo or 
their surroundings.  
Within ecotones, densities are the highest in the Northeastern part of the country, close to the 
borders with Cameroon and Gaboon, particularly around the city of Anisoc. Areas of highest 
densities range from 6.3 to 91 people per square kilometer. Detailed results of this interface can 
be found in Appendix 2.  

 
 
Figure 6: Population density in ecotones (2015), in Equatorial Guinea mainland (left) and in Djibloho (right) 

2. Settlements 

Figure 7: Settlements in mainland Equatorial Guinea (green), in areas deforested between 2010 and 2014 (red, right) 
and in ecotones (red, left) 
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The analyses conducted on the settlement layer suggested that 76.6% of the 2049 settlements 
were located within deforested areas and 77.25% were located in ecotones. They seem to be 
concentrated around urban areas and along the main roads. These high rates illustrate the 
phenomenon of human encroachment and dwelling in forest fringes following deforestation 
events. Please refer to appendix 3 for the detailed results of this interface analysis. 
 
 
 

3. Cropland 
17.9% of the 2015-cropland areas were located on lands deforested in the previous 5 years and 
43.1% of these croplands were located in ecotones which emphasizes their proximity to the 
forest matrix and the potential for pathogen spillover, due to the creation of favorable habitats 
and to increased human exposure. These croplands are usually located close to areas with 
greater human population density. When croplands are not overlapping ecotones, they are 
usually circled by them. Please refer to appendix 4 for the detailed results of this interface 
analysis. 

 
Figure 8: Zoom on cropland, ecotones and their overlap, in Djibloho city. 
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4. Landcover and deforested areas 
Table 2: Distribution of deforestation events of 2010-2014 within the landcover categories of 2015 

The statistics performed on the deforested 
areas in the different land cover classes 
highlight that most of these events are 
located on land classified as “closed forest” 
in the 2015 land cover, which enhance 
discrepancy between the two datasets used. 
Otherwise, this analysis enables to identify 
the anthropic activities that were carried out 
in 2015 on deforested areas, such as 
livestock breeding on herbaceous 
vegetation, agriculture on cropland and 
urban expansion in urban areas. 
Deforestation in open forests can be 
interpreted as exploitation of forest (timber 

and non-timber products) and settlements.  

5. Livestock breeding 

 
Figure 9: Livestock breeding densities (2006) in areas deforested between 2001 and 2005, mainland Equatorial Guinea 
(left) and Djibloho city (right).  

Livestock densities are much lower in deforested areas than in ecotone areas. Whereas the 
highest livestock densities range between 0.26 and 3.7 animals per square kilometer in 
deforested areas, they reach between 28 and 170 animals per square kilometer in ecotones.  
There are also less animals located in deforested areas since 52.34% of the 2006 livestock 
densities were located in ecotones in 2015, whereas only 1.4% of this livestock was located in 
areas deforested between 2001 and 2005.  
The higher densities can be found along the coast, in the northern and southern part of the 
country. Variation in small densities displayed in Figure 9 also highlight the presence of 
livestock located along some of the roads. Please refer to appendix 5 for detailed figures. 

Landcover class % of 
deforestation 

shrubs 0.03 
herbaceous vegetation 4.98 
cropland 4.61 
urban 3.38 
permanent water bodies 0.01 
temporary water bodies 0.01 
herbaceous wetland 0.01 
evergreen broadleaf closed forest 64.89 
deciduous broadleaf closed forest 3.66 
evergreen broadleaf open forest 14.06 
deciduous broadleaf open forest 4.25 
open sea 0.11 
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6. Logging concessions 
The interface between deforestation and logging concessions was studied between 2001 and 
2014, and enables to located places of potential spillover risk due to wood extraction.  
The results of this analysis highlight that deforestation in Equatorial Guinea is not solely carried 
out in logging concessions. As a matter of fact, the analysis enabled to highlight that only a 
small portion of deforestation can be attributed to logging activities since it was assessed that 
84.8% of the deforestation between 2001 and 2014 had been carried out outside logging 
concessions.  
 

Figure 10: Livestock breeding densities (2006) in the areas considered as ecotones in 2015. 
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Figure 10: Deforestation events between 2001 and 2014 and location of logging concessions and the year the permit was 
granted. Missing permit years are indicated with a 0. 

3. Exposure to hazardous areas 
The cost distance analysis, based on the travel time to deforested areas and ecotones, as 
displayed in Figure 12 and 13, highlight that in 2015, most of the country was located within 
less than two hours of travel from an area deforested between 2010 and 2014 or from an 
ecotone. Only a very little portion of the country is remote from these deforested and 
fragmented areas.  
Such proximity to deforested areas and ecotones result in the majority of the population being 
located within or very close to them (within less than an hour of travel), as displayed in Figure 
13.  
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Figure 11: Cost distance map to deforested areas, mainland Equatorial Guinea (left) and zoom on Djibloho (right). 

 
Figure 12: Cost distance map to ecotones, mainland Equatorial Guinea (left) and zoom on Djibloho (right). 

 

 
Figure 13: Distribution of the population (%) in the categories of cost-distance to ecotones and deforested areas. 
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4. Translating population vulnerability to infectious risk through 
the accessibility to hospitals  

 
Figure 14: Accessibility to hospitals over the whole country displays a maximum travel time of 13h36 (left). Zoom on 
Niefang District Hospital (right). 

The accessibility map in Figure 14, based on the travel time to the nearest hospital facility over 
the whole country enables to visualize the areas where the population would be most vulnerable 
to a health hazard due to limited access to health care. There are 18 facilities in Equatorial 
Guinea located in urban areas, usually on the main road network. Overlapping the result of this 
analysis on the settlements data (Figure 15) enables to visualize that a majority of these are 
located within one hour from the nearest hospital, but that a few of them stand very remote from 
health facilities and would be more vulnerable to the EID risk. These are notably located within 
Monte Alen National Park and in the Southern part of the country.  
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Figure 15:Overlap between accessibility to hospitals and settlements 

 

5. Infectious risk associated to forest habitat degradation and lack of 
accessibility to hospital facilities.  

Combining hazard information relative to deforestation and ecotones to the vulnerability 
analysis has enabled to locate “hotspots” of infectious risk related to forest habitat degradation. 
Such hotspots are defined to be located in and close to hazardous areas where the accessibility 
to health facilities is low. In other word, we modelled the risk associated to Emerging infectious 
disease (EID) as the combination of proximity to areas of greater interspecies contact due to 
forest habitat degradation, and the lack of accessibility to hospitals.  
These heatmaps enable to combine the information of hazardous areas and their proximity with 
the accessibility to health facilities. The resulting maps (Figure 16 and 17) highlight (in red) the 
areas most at risk due to great proximity to deforested areas or ecotones and limited access to 
hospitals. Several areas of deforestation and ecotones are identified at greater risk associated 
with deforestation; the city of Djibloho for instance, as displayed in Figure 17, the Northeastern 
part of the country close to Cameroon, and the areas located along the motorway, and other 
smaller road axes.The areas associated with greater risk due to ecotone presence are especially 
located in the Southwestern and northeastern part on the country.  
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Figure 17: EID risk based on the cost distance to deforested areas and the accessibility to hospitals (factored by 10). 

Figure 16: EID risk, zoom on Djobloho city (B, left) and Niefang city (A, right). These two maps enable to picture how 
the EID risk in a region close to a hazardous area is mitigated by the presence of a hospital (in Niefang).  

              

A 

B
A 



 33 

 
Figure 19: EID risk distribution based on the cost distance to ecotones and the accessibility to hospitals 

On both maps, the presence of the Niefang hospital, surrounded by road infrastructure is a good 
example of the mitigation of the risk associated with the hazardous areas. The areas with the 
most reduced risk combine intact forest fragments and accessibility to hospital facilities and are 
located on the eastern part of the country. However, the map of EID risk associated with 
ecotones displays risk areas that stretch further than the ones associated with deforestation 
although the deforestation map highlight concentrated areas of very high risk. As a matter of 
fact, the zonal statistic sum over these different categories of risk and the population layer 

Figure 18: EID risk distribution, zoom on Djobloho city (left, B) and Niefang city (right, A). 

A 

B 
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highlight that the areas associated with greater risk due to ecotones comprise the majority of 
the population (40% at least).  
 
Summing the population density in these different categories of risk enable to assess the 
population exposed to the risk of infectious diseases associated to forest habitat degradation. 
The results highlight that about 30% of the population is located within areas with a high level 
of risk associated to deforestation and about 50% in areas associated to forest degradation 
(ecotones). They represent the most vulnerable population to the Emerging infectious disease 
risk as defined by this approach and could consequently be targeted by monitoring and 
surveillance program.  Please refer to appendices 6 and 7 for detailed figures. 

Discussion 
1. Contribution  

A. Health 
Responding to Allen et al. (2014) call for the design of ambitious approaches to risk prediction, 
these modelling efforts strive to give a spatial illustration of the mechanisms of pathogen 
spillover due to land use change mainly described in Faust et al. (2018).  
This cross-disciplinary research intends to draw attention on the Emerging risk of infectious 
diseases associated to forest habitat degradation and land use change. Such risk was modeled 
through the combination of hazardous areas and the accessibility to health care facilities. This 
model implies that this infectious risk is likely to be mitigated through improvements in health 
monitoring and infrastructures and/or through the conservation of forest habitat ecosystems.  
While such approach is not designed to identify hotspot of emergence of specific diseases nor 
to demonstrate the relationship between environmental degradation and disease emergence, it 
nonetheless draws attention on potential areas of pathogen spillover into the population and 
therefore candidates for index case mapping. Identification systems of exposed areas and 
populations need to be improved, coupled with the improvements in surveillance and 
monitoring (K.M. Fornace et al. 2016), which is what this research has striven to participate to, 
along with supporting the implementation of adequate public health interventions to mitigate 
this risk. The methodology used to design these models aims to support outbreak monitoring, 
surveillance and the implementation of early warning systems  
This research exemplifies that high resolution maps to support health monitoring can be created 
with open data that could be analyzed with open access software. Such granular analysis aims 
to support upstream measures decision making and helps to target accurate responses to 
potential infectious disease risks.  

B. Forest management, biodiversity and health 
This work is enshrined in the research momentum which strives to link ecosystem and 
biodiversity conservation to health issues. It is grounded in the assertion of disease emergence 
regulation by intact primary forests as a valuable ecosystem services (B.A. Wilcox and Ellis 
2006).  
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Such advances in research are supported by the momentum for sustainable forest management 
in Equatorial Guinea (Martin et al. 2013) and commitments to the international initiative for 
Reducing Emissions from Deforestation and Forest Degradation (REDD+) commitments 
(Central African Forest Initiative n.d.). 
 

2. Methodology and findings relevance 

A. Modelling hazardous areas 
Considering the limited understanding stated out by Murray and Daszak (2013) on 
epidemiological factors of emergence of infectious diseases related to land use change and the 
complex mechanisms that link them, hazardous areas were modelled in two different ways and 
then analyzed separately in order to best reflect the spectrum of environmental conditions of 
forest habitat degradation which can be associated to infectious disease emergence, pointed out 
by recent epidemiological research (Faust et al. 2018; Despommier, Ellis, and Wilcox 2007; 
B.A. Wilcox and Ellis 2006; N.L. Gottdenker et al. 2014). 
While deforestation mapping highlights specific, more localized areas likely to create favorable 
conditions for pathogen adaptation and transmission, ecotone modelling displays areas of 
interspecies contact that are more spread out on the territory.  
While deforestation mapping intends to model and point out areas of concentrated forest 
disturbance and removal, ecotones displays areas of interaction between the remaining 
fragments or forest core and the anthropic matrix.  
A study on the factors of emergence for a specific disease is likely to filter these areas according 
to the type of forest cover (J. Olivero et al. 2017), to the forest patch size (Chaves et al. 2018), 
tree crown cover density over time (K.M. Fornace et al. 2016) for instance.   

B. Areas of interface 
Modelling areas of interface between hazardous areas and different anthropic activities enables 
to understand what the activities undertaken in hazardous areas that can potentially increase 
human exposure to infectious risks are and where they are located. They allow to point out 
hotspots of greater exposure where surveillance should be targeted.  
Urban expansion and settlements in recently deforested areas should especially be subject to 
increased monitoring, as a significant part of the population is located within areas which have 
undergone forest clearance and areas of increased interspecies contact. The mapping of the 
settlements located in hazardous areas can support decision making for the implementation of 
monitoring sites. 
In Equatorial Guinea, agriculture is one of the activities which greatly contribute to increased 
exposure to pathogens and was modelled through cropland. The results suggested that in 
Equatorial Guinea, agriculture is particularly exposed activity to the infectious risk especially 
due to overlap and proximity with hazardous areas. On the other hand, interactions of forest 
habitat loss and livestock breeding interactions seem less interrelated in Equatorial Guinea at 
the time of the study, than in countries of South Eastern Asia such as Malaysia for instance 
(Chua 2003). As a matter of fact, results showed that only a fraction of the 2006 livestock 
densities were located in previously deforested areas and that these densities were rather low. 
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However, these results are likely to differ in another period of time and should be compared 
against an analysis of more recent data. To support this hypothesis, results show that about half 
of the 2006 livestock were located in areas considered as ecotone in 2015. Assuming that 
livestock farming has remained in the same areas as in 2006, and has expanded, these are 
located in hazardous areas and should receive increased attention and surveillance.  
 
In terms of methodological limitations, the interface analysis between the land cover classes 
and the deforestation events has highlighted a discrepancy in the forest cover assessment 
between the two datasets since most forest loss events were located within closed forest pixels. 
This could be explained by the different primary resolutions of the datasets used (about 30m 
for the gross forest loss datasets and 100m for the land cover), with pixels in the land cover data 
set not capturing finer grain deforestation. 
These analyses were limited by data availability and could be completed by including other 
factors pointed by epidemiological studies such as mammal biodiversity (Allen et al. 2017),  
extractive industries (Allen et al. 2014), bush meat hunting (Wolfe N et al. 2000), or irrigation 
activities (N.L. Gottdenker et al. 2014). Moreover, the logging extraction data only gave a 
general idea of the areas were wood extraction could be carried out but there are no open data 
available to identify the impacts associated to logging extraction. Moreover, the inclusion of 
more recent and finer scale data on livestock breeding would also contribute to completing the 
model. Environmental and climatic variables such as included by (E.N. Vianna et al. 2017; D. 
Valle and Tucker Lima 2014) could contribute to refining these analyses.  

C. Exposure to hazardous areas 
Whereas a classic approach to modelling accessibility would be based on assessing the distance 
to deforested areas and ecotones, the analyses conducted in this research have used travel time 
based on different transportation means as the proxy for accessibility. As the country’s road 
infrastructures develop, the scenario used can be adapted to reflect the new conditions of 
travelling.  
Almost the whole country is located within 1 hour of travel to deforested areas and ecotones 
which can be explained both by the large area covered by deforestation and ecotones and by 
the small surface area of the country. Moreover, deforestation patches are often located on or 
along the main arterial roads. Comparing the analysis of the cost distance maps against 
population density demonstrates that most of the population is located within 1 hour of travel 
from deforested areas or ecotones, and that at least 40% of the population could be subject to 
increased monitoring and attention for being located within the hazardous areas.  
Such mapping highlights the extent to which the population of a country can be impacted by 
forest habitat degradation. Although deforestation is concentrated in specific areas of the 
country, the surface of the country and the road infrastructure network result in a great exposure 
of the population to hazardous areas.  
 

D. Accessibility to hospitals 
Infectious disease risk is intertwined and likely to be exacerbated by economic and social 
factors such as the access to adequate public health infrastructures (B.A. Wilcox and Ellis 
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2006). In this regard, the approach developed in this research has taken into consideration the 
accessibility to medical infrastructure as a component of the infectious risk associated with 
forest degradation. The accessibility analysis has therefore enabled to identify areas where the 
transmission and the spread of infectious diseases in remote settlements would be difficult to 
monitor first of all and costly to cure secondly.  
Another way to model the population’s vulnerability could therefore be based on population 
densities, access to sanitation, or an in depth analysis of one of the interfaces studied in the first 
section.   

E. Heat maps and the risk of infectious Emerging disease associated to forest 
habitat degradation 

Comparing the exposure to hazardous areas against the accessibility to hospitals has enabled to 
point out areas where the population would encounter a greater risk of infectious disease 
emergence and outbreaks. The produced heat maps give a broad idea of potential hotspots for 
Emerging infectious risk associated to forest habitat degradation and enable to identify 
vulnerable areas where new infrastructures should be implemented or where existing ones could 
become monitoring centers. The highlighted vulnerable areas constitute good candidates for 
increased surveillance.   
These maps also highlight the areas that could benefit from the construction of new 
infrastructures, such as in the Southern and the Northwestern parts of the country. Moreover, it 
enhances that some existing facilities such as Anisok District hospital, could become 
monitoring centers due to their proximity to both types of hazardous areas, to their good 
accessibility for the surrounding area, and for being located in high risk areas. This could also 
be the case of Nsoc Nsomo District hospital.  
These results could also be interpreted through thresholds of risk defined accordingly to the 
epidemiological specificities of different diseases and these analyzes should also be refined 
considering environmental and epidemiological factors more accurately, depending on each 
specific infectious disease.  Moreover, these results should be filtered according to the capacity 
of the facilities to diagnose and treat Emerging Infectious Diseases.  
Computing the population located in the areas considered at highest risk enables to emphasize 
the need to develop appropriate measures to monitor the potential infectious risk, since a 
significant portion of the population seems to be affected. 
The index developed by this approach was intended to associate the data of hazardous areas 
with the data of accessibility in the simplest manner as possible. Ultimately, the created heat 
maps highlight that a significant portion of the population is located in regions very vulnerable 
to infectious risk associated to land use change and which also are poorest in terms of heath 
infrastructures. The mapping of risk areas also highlights how road infrastructures that imply 
greater and easier mobility across the territory, also contribute to increased infectious risk 
associated to forest habitat degradation. Such heat maps could be more nuanced if created for 
territories with more heterogeneous results of cost distance analysis to hazardous areas.  
The final result obtained with this methodology is intended to be very general and simple. It 
could be complexified by including and weighting other factors of exacerbation of the 
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infectious disease risk such as the increase in population densities, the access to potable water 
and sanitation (B.A. Wilcox and Ellis 2006). 
However, as the methodology showed, the inversion of the accessibility data has led to creating 
an index of values too small to be directly compared against the values of hazardous areas. The 
factor 10 by which the accessibility values were consequently multiplied has led to the creation 
of an index with an extreme value of 10. Improvement of this methodology should focus on 
finding a way to combine both information without having to weigh them and should perhaps 
extract outliers from the analysis. 
 

3. The way forward 
Little research has been made on the epidemiological context of Equatorial Guinea associated 
to anthropic environmental change and the drivers of disease emergence linked to them, this 
research therefore aims to constitute a stepping stone for future studies on the subject in this 
area. The methodology developed in the course of this research aimed at producing general 
results to locate areas with greater potential risk associated to forest habitat degradation and 
could be replicated on countries or regions with larger surface areas. Possible improvements 
include adapting it to a specific disease and including the factors of emergence accordingly. 
Moreover, existing epidemiological studies on the factors of emergence of specific Emerging 
infectious diseases such as conducted in (Chaves et al. 2018; K.M. Fornace et al. 2016; T.L. 
Goldberg 2008; J. Olivero et al. 2017; O. Pernet et al. 2014; M. Rulli et al. 2017; D. Valle and 
Tucker Lima 2014; E.N. Vianna et al. 2017; A.Y. Vittor et al. 2009) for instance, could be 
completed with an accessibility analysis to hospital facilities by using the same approach.  
The robustness of the methodology developed in this research could be tested against by 
comparing the identification of hotspots of specific Emerging infectious diseases with the 
hotspots highlighted in the results of this research. 
The model’s sensitivity should be tested by comparing the final results after having increased 
or decreased the travel times (Table 1) through the different elements of the landscape. Such 
approach implies that any change in the road and bridge infrastructures will affect the 
accessibility results and should therefore be reflected. 
 
Finally, both the cost distance and the accessibility analyses were isotropic. This limitation 
should be overcome to produce more accurate results, especially in countries with great 
elevation differences that would significantly influence the distribution of travel time.  

Conclusion  
This research has built on existing literature on the mechanisms of infectious disease emergence 
associated to tropical forest degradation in order to model the areas of Equatorial Guinea 
associated with this potential risk and the population exposed to it. Mapping this risk has 
consisted in modelling areas of potential interspecies contact through two different approaches 
(deforestation and ecotones) and to assess the cost distance to these areas based on the time to 
travel to their edges, which represented the hazard of Emerging infectious diseases. The 
vulnerability was assessed through an accessibility analysis to the nearest hospital facilities over 
the whole Guinea Equatorial territory. Other results include the interfaces between hazardous 
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areas and anthropic activities, where interspecies contact is likely to be maximized, and 
assessment of the population densities in the hazardous and the risk areas.  
The result of this analysis point to areas where the population could be exposed to a risk of 
infectious Emerging disease and provide a basis for decision making with respect to monitoring 
and surveillance that can support and complement specific epidemiological studies. 
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Appendices 
1. Appendix 1: Processes workflow 

All analyses were processed in ArcGIS (http://desktop.arcgis.com/en/), unless if indicated 
otherwise (AccessMod ver.5, https://www.accessmod.org).  
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2. Appendix 2: Interface between hazardous areas and the 
population distribution 

Layer Summed population % 
Equatorial Guinea 769’142 100 
Deforestation (2010-14) 148’581 19.32 
Ecotones 322’935 40.5 

 

3. Appendix 3: Interface between hazardous areas and settlements 
 

Layer Summed population % 
Equatorial Guinea 2049 100 
Deforestation (2010-14) 1569 76.57 
Ecotones 1583 77.25 

4. Appendix 4: Interface between hazardous areas and cropland 
 

Layer Summed population % 
Equatorial Guinea 2’419’040 100 
Deforestation (2010-14) 432’360 17.87 
Ecotones 1’042’288 43.09 

 

5. Appendix 5: Interface between hazardous areas and livestock 

 
 
 
 

6. Appendix 6: Distribution of the population in risk areas 
associated to deforestation 

 

Risk category  Index Range % of pop in deforested 
1 (highest) 0.000007855 - 0.03862 29.41 
2 0.03863 - 0.04111 1.83 
3 0.04112 - 0.07972 28.61 
4 0.07973 - 0.6797 39.90 
5 (lowest) 0.6798 - 10 0.25 

 
 
 

Layer Summed population % 
Equatorial Guinea 3967.4 100 
Deforestation (2010-14) 55.7308 1.4 
Ecotones 2076.67 52.34 
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7. Appendix 7: Distribution of the population in risk areas 
associated to ecotones 

 

Risk category  Index range % of pop in ecotones 
1 (highest) 0.0001172 - 0.006383  10.45 
2 0.006384 - 0.04425 39.53 
3 0.04426 - 0.2731 41.51 
4 0.2732 - 1.656 8.48 
5 (lowest) 1.657 - 10.01 0.04 

 
 


