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Introduction  
Groundwater plays a critical role in determining lake chemistry, particularly in lakes 
primarily fed by precipitation (Gurrieri et Furniss 2004). As precipitation typically exhibits 
low electrical conductivity and is deficient in nutrients, groundwater—rich in dissolved 
elements—becomes a key regulator of chemical inputs. Even when groundwater constitutes 
a minor component of the annual hydrological budget, it can serve as a significant source of 
nutrients for phytoplankton, especially in lakes influenced by snowmelt (Hurley et al. 1985). 
This is the case for the three alpine lakes within the studied watershed. 

 

 
In these alpine systems, a period of heightened biological activity occurs during summer, 
when both precipitation and snowmelt are reduced. During this time, groundwater exhibits 
higher conductivity due to limited dilution from meteoric inputs (Parriaux 1997). For 
instance, a study conducted on an oligotrophic lake in Wisconsin revealed that although 
groundwater accounted for less than 10% of the lake's annual water volume, it delivered 
nearly the entire external silica load—an essential nutrient for diatom growth (Hurley et al. 
1985). Diatom blooms in that system were found to coincide with peak silica concentrations 
supplied by groundwater. 
These lakes typically follow a "quickflow–baseflow" hydrological regime: quickflow refers to 
periods of high discharge driven by autumn rainfall and spring snowmelt, whereas baseflow 
characterizes more hydrologically stable periods with reduced water inputs, typical of 
summer and early winter (Parriaux 1997) (Fig.1). Parriaux et al. (1997) measured the 
electrical conductivity of the Poutet spring—located beneath the Chamossaire watershed—
over the course of a year and observed substantial variability (Cmax/Cmin = 2.73). This 
variation is attributed to low conductivity during quickflow events, resulting from the 
substantial dilution of Poutet spring waters by snowmelt and autumn rainfall. These 
episodes are characterized by a rapid influx of weakly mineralized water, reducing the 
conductivity to a minimum of 240 µS cm-1. Following these events, conductivity gradually 
returns to its baseline value, reaching approximately 650 µS cm-1 during baseflow periods 
(Parriaux 1997). 
Complementarily, a conductivity profiles through the water column of Lake Bretaye has 
been done in 2018  (Ordóñez 2022), revealing notable vertical variability. Two distinct 
conductivity peaks were recorded near the lake bottom: 268 µS cm-1 on June 16, 2018, and 
548 µS cm-1 on September 2, 2018. Based on the findings of Parriaux (1997), the abrupt 
influx of poorly mineralized meltwater leads to a transient decrease in overall mineral 
content, suggesting that these conductivity peaks are likely associated with groundwater 
inputs. 

Figure 1: Baseflow vs Quickflow (Parriaux, 1997) 
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Problem statement and research objectives 
Figure 2 presents the water level of Lake Bretaye, based on data from the study conducted 
by Ordóñez (2022). The figure appears to depict the end of the 2018 quickflow period, 
characterized by a decline in lake level between June 21 and July 15, followed by a phase 
with a more stable, linear rate of decrease. This interpretation is consistent with the 
conductivity measurements reported by both Ordóñez (2022) and Parriaux (1997), 
supporting the transition from a period of high inflow dominated by dilute snowmelt to a 
more stable baseflow regime. 

 
Figure 2: Lake Bretaye water level; the black line indicates the point at which the research team retrieved the data before 

redeploying the sensors. 

To better understand the seasonal dynamics of the three lakes—whose seasonality plays a 
critical role in shaping their biodiversity—this study focuses on the evolution of snowmelt 
during the year 2018. This reference year allows for direct comparison with the results 
reported by Ordòñez (2022). The objective is to improve our understanding of the 
hydrogeological processes governing these environments by examining the temporal 
evolution of the winter quickflow period, characterized by snowmelt-driven inflows. 
A master thesis has been done on this watershed, with the purpose to estimate the 
groundwater activity ok the lake, based on Ordòñez (2022) datasets. This study shows that a 
possible missing flow, due to snowpack, is probably occurring during the month of June.  
Figure 3 below shows the monthly result of this study. Qout,WMB is the residual flow, which is 
the difference between the mean lake level variability and the sum of evaporation and 
precipitation. This residual flux is likely to be driven by groundwater activity and snowpack, 
the two major unknown. 

 
Figure 3: Mean Lake volume variability, evaporation sum, and precipitation sum and residual flux on a monthly time base 



   

 5

State of art 
Snow Water Equivalent 
To quantify the total Snow Water Equivalent (SWE) over a watershed, the basin must first 
be delineated using a Digital Elevation Model (DEM) and exported as a shapefile. The SWE 
values are then spatially integrated over the watershed to compute the total snow water 
volume. 
Ideally, these remote sensing estimates should be validated against ground-based 
observations. However, in the absence of such data, model-based approaches must be 
relied upon. 
The spatial extent of snow cover is generally assessed using optical sensors such as MODIS 
or Sentinel-2. In this context, the Normalized Difference Snow Index (NDSI) is frequently 
employed to distinguish snow-covered areas from other land surfaces (Equ. 1) (Dozier 
1989).  
 

( ) / ( )Green SWIR Green SWIRNDSI        (1) 
 

Traditional approaches to estimating SWE rely on the product of snow depth and snow 
density, often derived from a combination of radar, lidar, and in-situ measurements 
(Rabatel et al., 2017; Niang et al., 2006). However, these methods are limited by the 
availability of high-resolution data and the difficulty of accurately modeling snow density 
across heterogeneous terrain. The estimation of snow water equivalent is commonly 
expressed as the product of the mean snow density and the snow depth (Equ. 2) (Rabatel et 
al. 2017), where SWE is the snow water equivalent, hsnow is the snow depth, ρsnow is the 
mean snow density. 

snow snowSWE h    (2) 
 

Snow depth can be estimated using remote sensing techniques such as differential phase 
measurements in the X-band or polarimetric decomposition in the C-band. Although the Ku-
band is considered optimal for penetrating snow and estimating SWE, it is not yet widely 
available on current satellite platforms  (Rabatel et al. 2017).  
Snow depth can be assessed using in-situ data - such as meteorological stations data -, snow 
models, such as CROCUS or SNOWMODEL, or satellite datasets such as Copernicus Global 
Land Service – Snow Depth (Yu 2021).  
Snow density, on the other hand, is typically derived from in-situ measurements or 
estimated through physical or empirical modeling approaches. The best approach to 
modelized it is an empirical models based on snow age, temperature and humidity density 
(Lee et al. 2024). As any in situ measurements were done back in 2018, a more basic 
approach was favored in this study. 
Snow Cover 
Numerous snow models are available in literature. Table 1 summarizes the key 
characteristics of the models considered in this study. Given the small size of the watershed, 
the need for a short temporal resolution and a high spatial resolution, the two Copernicus 
Wet/Dry Snow and SAR-WET SNOW products could be used. These datasets provides 6 – 12 
days estimates of wet and dry snow at a spatial resolution of 60 meters, which is particularly 
useful for estimating snowmelt (« Wet/Dry Snow 2016-Present (Raster 60 m), Europe, 
Daily », s. d.; « SAR Wet Snow 2016-Present (Raster 60 m), Europe, Daily », s. d.). In another 
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hand, despite the great temporal resolution of the MODIS/TERRA model, Snow Cover Daily 
L3, the spatial resolution is too big to provides consistent results on such a little basin (Hall 
et Riggs 2016). The Theia snow cover model uses data from Landsat 8 (30 x 30m, 16 days) 
and Sentinel-2B (20 x 20 m, 6-12 days). Therefore, it lowers the temporal resolution  and the 
median frequency of revisiting is 2,9 days (Gascoin et al. 2019). Furthermore, a recent study 
from Unige highlights a new algorithm of Snow Observation from Space (SOfS) for snow 
cover in Switzerland (Poussin et al. 2025). This dataset has a 30 m resolution with a monthly 
temporal resolution. 
 

Name of the model Agency Spatial resolution Temporal 
resolution 

WET/DRY SNOW Copernicus 60 m x 60 m 6-12 days 
SAR-WET SNOW Copernicus 60 m x 60 m 6-12 days 
Snow Cover daily L3 MODIS/TERRA 500 m x 500 m daily 
Data Terra Theia snow cover 30 m x 30 m – 20 m x 20 m 2,9 days (median) 
SOfS algorithm Unige 30 m x 30 m monthly 

Table 1: Overview of the different models 

The SOfS algorithm was chosen for this appliance, due to its parametrization made 
especially for Switzerland, this product offers a great accuracy. Other remote sensing 
methods, such as optical snow cover mapping (e.g., MODIS, Theia, Copernicus) and lidar-
based elevation change detection (e.g., ICESat-2), are acknowledged but are not the primary 
focus of this study. Instead, they are considered complementary sources for potential future 
validation or multi-sensor fusion. 
For example, the presence of wet snow is a strong indicator of ongoing snowmelt and thus 
provides a valuable proxy for estimating SWE dynamics, particularly in small alpine 
watersheds where snowmelt timing is critical for hydrological modeling. The high spatial 
and temporal resolution of the Copernicus product makes it especially suitable for this 
application. 
Snow depth 
The Theia snow products offer a snow depth model, unfortunately, during the period of this 
study, the model was momently unavailable. Radar sensors can be used to estimate snow 
depth, while LiDAR systems provide high-precision measurements of surface elevation 
changes, which can be used to infer snow accumulation (Niang et al. 2006). Such an 
approach requires a lot of preprocessing to assess the errors involved by trees, bushes and 
other elements of the landscape. Therefore, a more basic approach was chosen, using R to 
perform daily spatial interpolation of snow depth over a defined study area for the year 
2018 using a Random Forest regression model.  
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Snow density 
Unfortunately, no product offers a snow density map with a small resolution as required. 
Models for snow density are hard to use due to the need for in-situ measurements, such as 
snow age. These values must be measured directly in the field. As no such data were 
acquired during Ordòñez field trip in 2018, a simplified parametrization was selected. First 
possibility is to use average values (Lee et al. 2024). Newly fallen snow typically has a 
density ranging from 20 to 300 kg·m⁻³, depending on factors such as temperature, wind, 
and precipitation type. Dry snow under calm conditions has a density of 60–120 kg·m⁻³, but 
this increases significantly in the presence of wet snow, sleet, or strong winds, which 
fragment snow particles and enhance compaction (Jordan 1999). Another method could be 
to use a parametrization using air temperature (Pomeroy et Brun 2001) (Fig. 4, Equ. 3) 
 
 2 5967 9 51 25 ( / , ), , T

Snow e    (3) 

 
Figure 4: parametrization of the snow density using air temperature (Pomeroy et Brun 2001) 

Study site 
Lac de Bretaye (46°19’34.5” N, 7°4’18.9” E, Fig. 5) is located at 1785 m.s.l. in Switzerland, 
Canton de Vaud. It is a small and shallow hypereutrophic and pre-alpine lake, with a maxi-
mum depth of ~ 9 m and a surface area of ~ 4 ha (Ordóñez, 2022). The lake is surrounded by 
meadows used for animal grazing, except for the south where Alnus viridis proliferate 
(Thöle et al., 2016). In the summer of July 2019, abundant macrophytes were found on 
every side of the lake except the east side. The lake is surrounded by a cirque with high and 
steep slopes on the north and west side of it. Lac de Bretaye doesn’t have any surface 
upstream and downstream flows (Ordóñez, 2022). 
Lac de Bretaye is in the pre-Alpine region of Ollon (Vaud, Switzerland), near Lac des Chav-
onnes and Lac Noir, approximately 500 m apart and with an elevation difference of 50 to 
100 m. A tracer study indicated that at least Lac de Bretaye and Lac Noir contribute to the 
same two groundwater tables: Le Poutet (Ollon) and Coussy-Loudze (Leysin) (Parriaux, 
1997). 
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Figure 5: Lake Bretaye, Switzerland, VD (46°19’34.467” N, 7°4’18.89” E) 

The basin is small, with a total area of approximately 3 km2. The subbasins area of Bretaye, 
Chavonnes and Noir are respectively 1.36, 1.04 and 0.62 km2 (Fig. 6). 

 
Figure 6 : areas of the 3 watersheds estimated with swiss topographic data (OFEV 2024) 
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Geology of the watershed 
Lac de Bretaye follows a nivo-pluvial regime, with water level variations primarily driven by 
snowmelt and, to a lesser extent, rainfall (Parriaux 1997). The lakebed is semi-permeable 
(Parriaux 1997) (Fig. 7). As the field trip took place between June and September 2018, it 
started at the end of the snowmelt season. Consequently, the lake level was expected to 
stabilize following the final snowmelt events and thereafter respond mainly to rainfall. 

 
Figure 7: Hydrogeological structure of the aquiferous of Le Poutet (Parriaux, 1997) 

At the beginning of the field campaign in late June 2018, snow patches were still present 
within the catchments (Ordóñez 2022). The three lakes are surrounded by fracture systems 
(red lines, Fig. 8) (« Cartes de la Suisse - Confédération suisse - map.geo.admin.ch », s. d.). 
Lac de Bretaye lies within a dejection cone (light yellow, Fig. 8) composed of silt, gravel, and 
sand. Such deposits in topographic depressions typically form lakes, as their semi-
permeable nature hinders rapid drainage. Red dotted lines on the map indicate the 
boundaries of an ancient torrent. Geologically, the area is part of “La lame d’Oudioux,” a 
complex rock structure with surface layers comprising distinct geological units. The pink unit 
(Fig. 8) corresponds to a karstified Lower Jurassic limestone formation, representing a major 
aquifer. In contrast, the brown unit represents Aalenian black nodule-bearing schists, a clay-
rich and poorly permeable formation.  

 
Figure 8: Swiss Geological Atlas, scale: 1:25000, (Swisstopo 2024) 
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Beneath these formations, a thin stratigraphic layer separates the upper portion of the 
“lame d’Oudioux” from the Meilleret Flysch (white dotted line, Fig. 9). The Flysch is a thick, 
permeable unit that supports the Le Poutet groundwater table. The intervening layer 
comprises Rhaetian sandstones—permeable due to their granular structure—and siliceous 
dolomites, which exhibit fissure permeability. Both formations are generally attributed to 
the Triassic period. 
The right portion of cross-section 10 (Fig. 9) corresponds to the green line shown in both 
Figures 8 and 9. 

 
Figure 9: Geological cut of the Bretaye zone, from the Swiss Geological Atlas, sheet 1285 scale: 1:25000(Swisstopo 2024) 
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Methodology 
Watershed delineation 
The first step involved delineating the study area to ensure that all subsequent analyses 
were spatially constrained to the relevant region. To achieve this, we downloaded the 
“Swiss Watersheds” dataset in .gdb format from the official website of the Swiss Federal 
Office for the Environment (OFEV 2024). Using ArcGIS Pro, the specific watershed of interest 
was extracted and exported as a shapefile. After verifying the spatial reference system to 
ensure consistency with Sentinel-2 imagery, the dataset was ready for further geospatial 
processing. 
Snow cover 
In this study, a direct remote sensing approach based on the SOfS algorithm product was 
adopted. This model will provide information about snow cover with an accuracy of ~95% 
and an overall acceptable temporal resolution, with a 30 m spatial resolution. This layer is 
the boundary one in terms of temporal resolution. Therefore, other layers were acquired 
daily and monthly snow cover maps were used for the whole month variability of snow 
density and snow depth. 
The SOfS algorithm is a remote sensing method developed within the Swiss Data Cube (SDC) 
to monitor snow cover across Switzerland using optical satellite imagery. It addresses the 
challenge of cloud obstruction by applying a structured seven-step gap-filling process that 
enhances data continuity and reliability. 
At its core, SOfS algorithm generates monthly composites by selecting the maximum NDSI 
per pixel, effectively reducing cloud interference. Seasonal aggregation further improves 
data quality, resulting in up to 88% cloud-free observations. 
The algorithm integrates data from multiple satellite missions—Landsat-5, Landsat-7, 
Landsat-8, and Sentinel-2—to reduce cloud-related gaps. Additional steps include spatial 
filtering, neighborhood analysis, and elevation-based reclassification, which improve snow 
detection in mountainous regions. 
Validation against in-situ snow depth measurements confirms high accuracy, exceeding 95% 
when using a 5 cm threshold. While monthly resolution may miss short-lived snow events, 
especially in transitional elevation zones, SOfS provides robust long-term snow cover data 
suitable for climate monitoring and trend analysis. 
Implemented in Python, the algorithm is scalable and adaptable to other regions with 
similar environmental conditions, offering a reliable tool for large-scale snow dynamics 
assessment. 
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Snow density 
This study employs a geospatial modeling approach to estimate daily snow density across a 
defined watershed using temperature data from meteorological stations and a DEM. The 
methodology integrates spatial interpolation, regression modeling, and raster-based 
computation within the R programming environment, leveraging the terra, sf, and tidyverse 
packages. 
Three primary datasets were used: 

 A digital elevation model (DEM) at 25-meter resolution, representing terrain 
elevation. 

 A polygon shapefile delineating the watershed boundary  
 A series of daily mean temperature CSV files (temp_YYYY_MM_DD.csv) containing 

point measurements with geographic coordinates and temperature values. 
10 weather stations surrounding the watershed were retained for this appliance (Table 2), 
and data was acquired on the météo suisse open data portal (« Open Data - MétéoSuisse », 
s. d.). 

Station Acronym Latitude [°] Longitude [°] 
Diablerets DIA 46,32675 7,20378 
Aigle AIG 46,32665 6,92447 
Chateau d’Oex CHD 46,47982 7,13966 
Evionnaz EVI 46,18295 7,02675 
Sion SIO 46,21865 7,33020 
Col-Des-Mosses CDM 46,39153 7,09824 
Bouveret BOU 46,39345 6,85701 
Moléson MVE 46,29881 7,46081 
Montana MLS 46,54620 7,01775 
Adelboden ABO 46,49170 7,56070 

Table 2: Overview of weather stations used for temperature maps 

The use of high-resolution DEM data is critical for accurate terrain modelling (Al-Mutairi et 
al. 2019) because interpolation method applied to DEM significantly influence the precision 
of derived environmental variables. The DEM (Swisstopo 2004) was loaded using the 
terra::rast() function, and the watershed polygon was imported and reprojected to match 
the DEM’s coordinate reference system using sf::vect() and terra::project(). 
The algorithm iterates over each day of the year (1–365), corresponding to the year 2018. 
For each day, the script constructs the date string and locates the corresponding CSV file 
containing temperature observations. 
If the file is missing or malformed (e.g., missing required columns), the iteration is skipped 
with appropriate logging. 
Valid temperature data are converted into a spatial object and reprojected to the DEM’s 
coordinate system. The elevation at each station location is extracted from the DEM using 
terra::extract(). These altitude values are appended to the station dataset. 
A linear regression model is fitted to predict temperature as a function of altitude (Equ. 6) 
(Wang et al. 2011). Effectively, particularly in mountainous regions, surface air temperature 
exhibits a strong dependance on altitude. 
 

0 1airT Altitude     (6) 
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This model captures the lapse rate effect, where temperature typically decreases with 
elevation. If the regression fails (e.g., due to insufficient data), the day is skipped. 
A regular grid with 20 m resolution is generated over the DEM extent. Using the fitted 
regression model, temperature values are predicted for each grid cell based on its elevation. 
The predicted temperature raster is then masked to the watershed boundary using 
terra::mask(). 
Snow density is computed for each grid cell using an empirical exponential model, following 
Equation 3 (Pomeroy et Brun 2001). 
This formula reflects the inverse relationship between temperature and snow density, 
assuming colder temperatures yield lighter, less dense snow. 
The resulting snow density raster is exported as a GeoTIFF file using terra::writeRaster(). 
Each file is named according to the date and stored in the designated output directory. 
Errors during export are logged but do not interrupt the loop. 
Snow depth 
The R code used to infer snow depth integrates fixed topographic variables (elevation, 
slope, aspect) and dynamic meteorological data (temperature, wind speed) with observed 
snow depth measurements from Excel files. For each day, the script preprocesses and 
spatially transforms the snow station data, extracts environmental predictors from raster 
layers, trains a Random Forest model, and applies it to a prediction grid constrained by a 
watershed mask. The resulting interpolated snow depth raster is then exported for each 
valid date, enabling high-resolution spatiotemporal analysis of snow distribution. 
Weather stations were used depending on the availability of the different variables needed 
and the spatial distance to the study site, a summary of the stations used is available on 
table 3. Table 4 summarizes the stations where snow depth data were acquired. 
 

Station Acronym Latitude [°] Longitude [°] 
Sion SIO 46,21865 7,330203 

Evionnaz EVI 46,18295 7,026747 
Visp VIS 46,3029 7,842958 

Moléson MLS 46,5462 7,017753 
Adelboden ABO 46,4917 7,560703 

Vevey VEV 46,47124 6,815056 
Montagnier, Bagnes MOB 46,07102 7,225272 

Château d'Oex CHD 46,47982 7,139656 
Evolène EVO 46,11221 7,508631 

Col des Mosses CDM 46,39153 7,098239 
Table 3: Overview of weather stations used for dependent variables maps (except temperature). 
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Station Acronym Latitude [°] Longitude [°] 
Diablerets DIB 46,32675 7,203781 

Gryon GRY 46,2748 7,060363 
Grimentz GRI 46,17998 7,578081 

Hérémence HER 46,17829 7,404389 
Sierre SRE 46,29703 7,550214 

Zweisimmen ZWE 46,48819 7,532022 
Jaun JAU 46,61157 7,275894 

Fruence FRC 46,52583 6,901847 
Saas Balen SBA 46,15501 7,939382 

Tour de Gourze TDG 46,51034 6,740947 
Table 4: Overview of weather stations used for snow depth dataset 

The temperature kriged maps acquired for snow density were used. TPI, slope and aspect 
maps were created directly using the DEM. 
For each day, meteorological station data (latitude, longitude, wind speed and wind 
direction) are extracted from Excel files, cleaned, and transformed into spatial vectors using 
the LV95 coordinate system. Wind vector components (u and v) are computed 
trigonometrically. These spatial points are enriched by extracting topographic variables—
elevation, topographic position index (TPI), slope, and aspect—from fixed raster layers. The 
enriched dataset is then used to fit two linear regression models, one for each wind 
component. These models are applied to a regular prediction grid covering the study area, 
enabling spatial prediction of wind speed and direction. 
Snow Water Equivalent  
The resulting layer was derived through pixel-wise multiplication of three raster datasets: 
snow cover, snow depth, and snow density. Due to discrepancies in spatial resolution 
among the input layers, a resampling procedure was applied to achieve a harmonized 
resolution of approximately 28.2 m. The snow cover dataset encodes four categorical 
values: NA for water bodies, 0 for snow-free pixels, 1 for snow-covered pixels, and 2 for 
cloud-covered pixels. In the computational implementation, only pixels with a snow cover 
value of 1 were retained for multiplication; all other values were assigned zero to exclude 
non-snow-covered areas. Given that snow density is expressed in kilograms per cubic meter 
[kg / m³], the output of the multiplication yields the mass of snow per pixel (in kg), which 
can be converted to volume [m³] using the density of water at 0 °C (melting point) as a 
reference. 
Subsequent to the raster-based estimation of snow water equivalent (SWE), a daily 
summation of the pixel values was conducted to quantify the total volume of water [m3] 
across the study area. These aggregated values were exported to a CSV file, serving as a 
temporal dataset for further analysis. This file was then utilized to generate graphical 
representations illustrating the temporal evolution of SWE-derived water volume 
throughout the observation period. 
Finally, to infer the SWE over the watershed of Bretaye, smaller than the whole basin, a 
simple factor has been used, referring to surface ratio between the Bretaye basin (~0,62 
km2) and the whole watershed (~3,02 km2) (Fig.6). The whole methodology is reviewed on 
the following figure (10). 
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Figure 10: Schema reviewing the methodology and the different explicative variables 
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Results 
Dependent variables  
As kriging method required to have all the data points within the kriged area, the dependent 
variables maps were first calculated over a bigger square area, including the weather 
stations, and afterwards the final products were cropped over the Bretaye Basin. 
Wind speed and direction 
Wind speed and direction were modeled using topographic variables—Topographic Position 
Index (TPI), slope, aspect, and Digital Elevation Model (DEM)—as predictors. The results 
indicate that wind speed generally increases along topographic aretes, suggesting that 
slope, aspect, and elevation exert a significant influence on wind speed variability. It is 
important to note that TPI, slope, aspect, and DEM are static variables, remaining constant 
throughout the study period, whereas wind speed and direction are dynamic and vary 
temporally. Figure 11 illustrates the wind speed observed on January 1st, 2018. Due to 
unidentified technical issues, the wind direction raster datasets were rendered unusable 
and subsequently excluded from the analysis. Despite multiple attempts, the integrity and 
accessibility of these files could not be restored, preventing their integration into the 
modeling framework. 

 
Figure 11: Wind speed map on 01.01.2018 
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Temperature 
Temperature maps were derived using a DEM, and the resulting spatial distribution closely 
mirrors the elevation variability across the study area. On January 1st, 2018, (Fig. 12) 
temperatures in the lowest part of the basin were approximately 0 °C, whereas the highest 
point—Le Chamossaire—recorded temperatures near −3 °C. This gradient is consistent with 
the elevation difference of approximately 600 meters between the lowest and highest 
points of the watershed. The observed pattern aligns with the standard environmental lapse 
rate in alpine regions, where temperature typically decreases by approximately 0.56 °C per 
100 meters of elevation gain (Rolland 2003).  

 
Figure 12: Temperature map on 01.01.2018 

TPI, slope, DEM and aspect 
The aspect map (Figure 13) clearly illustrates a division of the watershed into two distinct 
sections, with the central boundary corresponding to the valley floor. The western slope, 
predominantly displaying blue tones, and the eastern slope, characterized mainly by yellow 
tones, reflect contrasting orientations. Despite this general division, both sides exhibit 
notable spatial heterogeneity in aspect, indicating variations in slope orientation within 
each section of the valley. 

 
Figure 13: Aspect map 
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The Digital Elevation Model (DEM) (Fig. 14) effectively captures the altitudinal variation 
within the basin, highlighting its topographic features such as ridgelines, peaks, and valley 
floors. This representation provides essential insight into the basin's geomorphology, 
delineating elevation gradients that influence a range of environmental processes, including 
hydrology, microclimate, and vegetation distribution. Enhancing the analysis by integrating 
derived topographic indices—such as slope, aspect, and curvature—could further improve 
the interpretation of terrain-related dynamics. 

 
Figure 14: DEM 

The slope map (Fig. 15) reveals significant variability in terrain steepness across the 
watershed. Certain regions exhibit steep slopes exceeding 50°, particularly along ridgelines 
and aretes, while other areas—such as the valley floor—are characterized by relatively flat 
terrain. This spatial distribution effectively delineates key topographic features, including 
steep escarpments and flatter depositional zones. Additionally, the slope map helps to 
identify geomorphological elements such as aretes and lake basins, which are typically 
associated with sharp slope transitions or low-gradient areas. Incorporating this information 
is crucial for understanding landscape stability, hydrological flow paths, and potential 
erosion processes within the watershed. 

 
Figure 15: Slope map 
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TPI (Fig. 16) is a dimensionless index that measures the difference in elevation between a 
specific cell and the average elevation of its surrounding neighborhood. Positive values 
indicate elevated features (e.g., ridges, hilltops), values near zero represent flat or mid-slope 
positions, and negative values indicate depressions or valleys. This makes TPI particularly 
useful for identifying and classifying landforms across a landscape, especially when used in 
conjunction with slope and curvature data. 
TPI map shows a strong spatial correlation with the slope map, particularly in the 
identification of key landforms. Aretes typically exhibit high positive TPI values, around +10, 
indicating that these features stand significantly above their immediate surroundings. In 
contrast, the valley floor shows TPI values close to 0, representing terrain that is relatively 
level compared to neighboring areas. Interestingly, areas adjacent to aretes sometimes 
display negative TPI values, around −5, corresponding to concave or recessed topographic 
positions such as hollows or depressions along steep slopes. 

 
Figure 16: TPI map 
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Snow density 
The snow density map dated 01 January 2018 (Fig. 17) exhibits a clear spatial correlation 
with the digital elevation model (DEM), which served as the primary explanatory variable in 
the generation of temperature maps. These temperature maps were subsequently 
employed to estimate snow density using the parametrization proposed by Pomeroy (2001). 
The resulting density values fall within the expected range for dry snow, consistent with the 
ambient temperature conditions recorded on that day, which varied between 0°C and −3°C. 

 
Figure 17: Snow density map of the watershed on 01.01.2018 

Snow depth 
The snow depth map from 01 January 2018 (Fig. 18) highlights the influence of multiple 
explanatory variables used in its derivation. A distinct delineation across the watershed 
reflects the impact of aspect, while the observed spatial variability suggests a complex 
interplay between slope, wind speed, and topographic position index (TPI). Snow depths 
range from 31 to 48 cm, which aligns well with measurements from nearby weather 
stations: Sion (~500 m elevation) recorded 10 cm, and Les Diablerets (~2900 m) recorded 48 
cm. Given that the watershed lies between these two sites in terms of altitude, the 
estimated values are consistent and plausible. The broader range observed within the 
watershed is likely attributable to its more intricate topography compared to the relatively 
simpler terrain surrounding the weather stations. 

 
Figure 18: Snow depth map on 01.01.2018 
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Snow water equivalent  
The snow water equivalent (SWE) map dated 01 January 2018 (Fig. 19) reveals a key 
limitation of the modeling approach: the presence of cloud cover. Pixels obscured by clouds 
were systematically assigned a SWE value of zero, despite the high likelihood of underlying 
snow cover. This simplification was adopted to maintain consistency and enhance the 
reliability of the dataset. Excluding these cloud-covered areas, SWE values across the 
domain ranged from 25,000 to 40,000 kg, which aligns with expected magnitudes based on 
prior observations. Given the spatial resolution of 28.2 meters, a representative snow depth 
of 0.5 meters, and a snow density of 80 kg/m³, the estimated SWE volume is consistent with 
an order of magnitude of approximately 32,000 kg per pixel. 

 
Figure 19: Snow water equivalent on 01.01.2018 
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Temporal evolution of SWE 
The temporal evolution of snow water equivalent (SWE) (Fig. 20), expressed in cubic meters 
of water, reveals notable seasonal patterns. Specifically, it highlights the two distinct snow 
seasons of 2018. The 2017–2018 snow season concluded on April 18, with minor snow 
inputs continuing until May 14. The 2018–2019 season began on December 8, preceded by 
small accumulations starting on October 28. To compare SWE between the entire 
watershed and the Bretaye basin, a scaling factor of 0.205 was applied, reflecting the ratio 
of their respective surface areas. Significant variability is observed, particularly toward the 
end of the 2017–2018 season, when snow tends to become wetter and denser, influencing 
SWE measurements. 

 
Figure 20: SWE between Bretaye and the whole basin 

The monthly variability of snow water equivalent (SWE), shown on the right axis, and the 
water mass balance, on the left axis, reveals a tenfold difference in magnitude (Fig- 21). 
Notably, the water level of Lake Bretaye exhibited increased variability during June, 
indicating a net decrease in water level. This decline is attributed to snowmelt, which was 
expected during this period. Between the last recorded instance when SWE was not zero 
and the start of the 2018 field campaign, one month and five days had passed. If considering 
the last moment before SWE dropped to zero, the gap extends to approximately two 
months prior to the field trip. These intervals will be discussed in the discussion chapter. 

 
Figure 21: SWE over Bretaye (right axis) and water mass balance variables (left axis) 
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Discussion 
The spatial analysis of the Bretaye Basin highlights the strong influence of topography on 
key environmental variables. The use of kriging necessitated initial interpolation over an 
extended domain encompassing all weather stations, followed by cropping to the basin 
boundaries, ensuring comprehensive spatial coverage. Wind speed exhibited a clear 
topographic control, generally increasing along aretes, consistent with the roles of slope, 
aspect, and elevation in modulating local airflow patterns; however, wind direction data 
could not be integrated due to technical limitations. Temperature distributions closely 
mirrored the DEM, with a decrease of approximately 3 °C between the lowest and highest 
elevations, reflecting the expected alpine lapse rate. The aspect, slope, DEM, and TPI maps 
revealed pronounced heterogeneity, delineating geomorphological features such as 
ridgelines, valleys, and aretes, and emphasizing the utility of TPI in identifying elevated and 
recessed landforms. Snow accumulation patterns were similarly influenced by topography: 
snow density correlated strongly with elevation, while snow depth was shaped by the 
interplay of aspect, slope, and TPI, yielding values consistent with nearby station 
measurements. The SWE map highlighted methodological constraints, particularly the 
assignment of zero values to cloud-obscured pixels, yet the derived SWE magnitudes were 
broadly in agreement with expectations. 
Firstly, it is important to address the quality of the explanatory layers of SWE calculated in 
this study. Snow density varies according to numerous factors, including air temperature, 
wind speed, wind direction, solar radiation, aspect, and precipitation in the form of snow or 
rain. The parameterization based solely on temperature is therefore very minimal in terms 
of precision. Moreover, the temperature map used as input does not account for wind 
speed or direction, but only for elevation. Wind patterns are commonly observed in the 
Swiss Alps, notably the Foehn—a warm wind blowing from the south, often persisting for 
several consecutive days. Additionally, snow “ages” and tends to densify, either through 
melting or compaction. To account for this, researchers generally rely on in-situ 
measurements to calibrate their models. 
As with snow density, the lack of in-situ data does not allow for quantitative validation of 
these variables. Nevertheless, the order of magnitude reached appears reasonable. Snow 
depth was estimated using a more complex model, likely closer to reality than the snow 
density parameterization; however, the absence of wind direction, solar radiation, and 
snowfall / precipitation data also limits the model. These factors have a direct impact on 
snow depth and are neglected in this study. 
The snow cover layer, in contrast, is highly accurate, though its 30 m resolution means that 
a pixel represents 900 m² on the ground. Consequently, if these 900 m² are only partially 
covered by snow, the SOfS algorithm is likely to classify the pixel as snow-free. This results in 
a probable early end-of-season estimate, as snow patches can persist for several weeks 
after the beginning of soil exposure in the Alps. Furthermore, although the cloud cover mask 
is well handled by the SOfS algorithm, it still generates NA values, which tend to 
underestimate SWE. 
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Figure 22 below presents several hydrological variables for Lake Bretaye. The blue curve 
represents precipitation over the lake, and the green curve shows the Gaussian mean of the 
lake’s volume variability. These curves have similar amplitudes, whereas the yellow curve, 
representing precipitation over the watershed, shows a larger amplitude. This graph 
indicates that nearly all precipitation on the watershed infiltrates directly into the aquifer, 
as the lake level shows little response. Therefore, the meltwater from snow within the 
watershed likely follows the same dynamics. This behavior can be explained by the 
geological structure of the watershed, which is characterized by fissured porosity. 

 
Figure 22: Precipitation over the watershed, the lake, gaussian mean of the volume variability and SWE 

However, the amount of water stored in the snow is substantial, approximately an order of 
magnitude greater than summer precipitation. Considering the complex geological structure 
of the watershed, the large volume represented by this meltwater, and the probable 
underestimation of snow cover at the end of the season, it is likely that meltwater is 
responsible for the steep rise in lake level (green curve) observed in June. Indeed, this is 
probably residual meltwater, with the saturated aquifer and the flow through fractured rock 
contributing to a delayed response. 
Overall, this study emphasizes the essential role of in-situ observations for the validation of 
spatial models. Snow processes are particularly challenging to parameterize accurately, and 
these results highlight that, without direct field measurements, modeling efforts can 
demand substantial computational time and storage resources while yielding limited 
practical accuracy. Consequently, it’s recommended that comprehensive in-situ data 
collection be undertaken prior to large-scale modeling exercises to ensure both efficiency 
and reliability in snow-related environmental simulations. 
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Conclusion 
This study aimed to enhance the understanding of hydrogeological processes governing 
alpine lake systems, with a particular focus on the seasonal dynamics driven by snowmelt 
and groundwater inputs. Using 2018 as a reference year—chosen for its compatibility with 
existing datasets from Ordóñez (2022)—the investigation pursued the following objectives: 
To characterize the transition between quickflow and baseflow hydrological regimes and 
assess their influence on lake water chemistry. To evaluate the role of snowmelt in 
modulating lake conductivity and nutrient availability, particularly during biologically active 
summer periods. To estimate groundwater contributions to lake volume and solute fluxes, 
using residual flow analysis derived from lake level, precipitation, and evaporation data. 
To identify potential unaccounted inflows, likely associated with snowpack dynamics, 
especially during early summer (June), when discrepancies in water balance were observed. 
By addressing these objectives, the study contributes to a more refined understanding of 
alpine lake hydrology and its implications for nutrient cycling and ecosystem functioning. 
The spatial modeling of environmental variables across the Bretaye Basin revealed clear 
topographic influences on climatic and snowpack dynamics. Wind speed increased along 
ridgelines, shaped by slope, aspect, and elevation, though wind direction data were 
excluded due to technical issues. Temperature distribution followed elevation gradients, 
consistent with the expected lapse rate in alpine regions. Topographic indices (DEM, slope, 
aspect, TPI) effectively delineated geomorphological features such as aretes, valley floors, 
and escarpments, providing a robust framework for interpreting terrain-driven processes. 
Snow density and depth showed strong spatial variability, influenced by aspect, slope, and 
wind exposure, with modeled values aligning well with nearby station data. Snow Water 
Equivalent (SWE) estimates were consistent with theoretical expectations, though cloud 
cover introduced gaps in the dataset. Overall, the results confirm the reliability of the 
modeling approach and highlight the importance of integrating topographic and 
meteorological variables to understand alpine watershed dynamics. 
This study confirms the strong influence of topography on environmental variables within 
the Bretaye Basin, with wind speed, temperature, and snow distribution all shaped by 
terrain features. However, several limitations emerged, notably the exclusion of wind 
direction data and the simplified parameterization of snow density based solely on 
temperature. The absence of key inputs—such as solar radiation, precipitation type, and in-
situ measurements—limits the precision of snow-related models. The SWE layer, while 
broadly consistent with expectations, was affected by cloud cover and resolution 
constraints, likely leading to underestimations of late-season snow cover. Hydrological 
analysis suggests that most precipitation infiltrates directly into the aquifer, with delayed 
lake-level responses driven by residual meltwater and fractured bedrock flow paths. These 
findings underscore the need for robust field data to calibrate and validate spatial models. 
Future work should prioritize in-situ measurements and integrate additional meteorological 
variables to improve the accuracy and applicability of snowpack and hydrological 
simulations in alpine environments. 
This study provides a foundational understanding of the spatial and hydrological dynamics 
within the Bretaye Basin, emphasizing the influence of topography on environmental 
variables and the challenges of modeling snow processes without in-situ data. While 
limitations remain, the results offer valuable insights into alpine watershed behavior and 
highlight key directions for future research, particularly the integration of field 
measurements to enhance model reliability and ecological relevance. 
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