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Summary 

Land Cover (LC) is a key environmental data variable and the study of changes in LC requires accurate, 

regular data that represents the spatial and temporal scales of potential LC change. However, 

operational LC products for Switzerland are currently limited in their spatio-temporal resolution. 

Continued development of research in Earth Observation and Machine Learning has shown that 

classification of satellite imagery is a feasible option for the production of LC datasets, but there are 

still a number of approaches to choose from. The aim of this study was to provide insight into the 

feasibility of using of ML classification of satellite imagery to produce LC data for Switzerland, based 

on a subset of data from Western Switzerland. More specifically, the objective was to compare the 

accuracy of space-first and time-first approaches to classifying satellite imagery, as well as the impact 

of methods for improving model performance and inclusion of additional input variables. The accuracy 

of using a space-first approach was lower compared to that using the time-first Satellite Image Time 

Series (SITS) approach. In all iterations, model performance was lowest for LC classes representing 

Brush Vegetation. Methods to counter the underrepresentation of minority classes were ineffective, 

and the greatest model improvement came from the addition of DEM auxiliary variables. The overall 

performance of the various supervised classifications is comparable to current operational land cover 

datasets, however performance for minority classes may present an obstacle to their use in studies of 

LC change, considering the relatively subtle rates of change occurring in some LC classes in 

Switzerland. Continued development of the SITS methodology to test its transferability over time and 

expansion of testing to other bioregions in Switzerland will be necessary to produce an operational 

annual land cover dataset which can be used at the national scale.  

1. Introduction 

Land Cover (LC) is a key environmental data variable representing the (bio)physical features covering 

the Earth surface (Di Gregorio & Jansen, 2005), necessary for a wide variety of applications including 

urban planning, vegetation and agricultural monitoring, and modelling ecosystem services. LC and LC 

change play an important role in the assessment of multiple Sustainable Development Goals (SDGs). 

Changes in LC are often indicative of social, economic and political drivers at local, national and 

international scales, and can reflect conflicting states of stability or rapid transformation co-occurring 

across small spatial distances (Gómez et al., 2016). The availability of accurate, reliable, and timely LC 

data is therefore crucial for understanding and modelling environmental processes on policy relevant 

time-scales (Verde et al., 2020). 

Currently, LC and Land Use (LU) data for Switzerland is produced by the Federal Office of Statistics 

(OFS), is available at a resolution of 100m, and covers the periods of 1979-1985, 1992-1997, 2004-

2009, and 2013-2018 in 4 distinct datasets. These data, known as the ArealStatistik, are useful in terms 

of their high thematic resolution and their tailored categories which cover the specific features of 

Swiss landscapes. Even so, the low update frequency and relatively coarse spatial resolution are at 

odds with the data needs for quantifying variables which are known to be as dynamic and spatially 

variable as LC and LU (Ban et al., 2015). The ability to analyse LC maps on an annual, or sub-annual, 

basis would facilitate greater understanding of the processes and environmental pressures driving LC 

change (Kennedy et al., 2014; Teixeira et al., 2014), and allow for consideration of both subtle and 

rapid changes which can indicate diverse pressures on LC. However, the criteria for operational LC 

products are demanding. Such datasets need to be reproducible and automatable, meet requirements 

for spatial continuity and temporal coherence between map updates, and easily adapt to changes in 

nomenclature to ensure their continued relevance for policymakers and researchers (Inglada et al., 

2017).  
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Within the context of increasing open access data, analysis ready data (ARD) formats, and capacity 

improvements for data processing, the state-of-the-art of LC mapping has greatly advanced in recent 

years (Wulder et al., 2018), keeping pace with increasing demands for LC data from research 

communities(Gómez et al., 2016) . Recent efforts to downscale LC data for Switzerland have improved 

the spatial resolution from 100m to 25 m using an algorithmic approach, however, the temporal 

resolution of datasets produced remains insufficient (Giuliani et al., 2022). The increasing availability 

of open-access high-resolution remote sensing data has vastly increased the potential for the 

development of land cover datasets from local to global scales (Ban et al., 2015). Satellite imagery 

provides a consistent dataset of earth observations which is spatially continuous and contains the 

temporal resolution necessary to identify classes with strong temporal dynamics (Inglada et al., 2017; 

Verde et al., 2020). Use of Machine Learning (ML) algorithms, with their ability to cope with high-

dimensional data and map classes with complex characteristics, provides an automated approach to 

classification (Maxwell et al., 2018). Even so, ML is not yet widely implemented in the production of 

operational Land Cover data for Switzerland, with its use currently limited to partial automation of 

classification of aerial photography of the ArealStatistik surveys (OFS, 2022a). 

The aim of this study is to provide insight into the feasibility of using of ML classification of satellite 

imagery to produce an annual LC dataset for Switzerland. More specifically, the objective is to 

compare the accuracy of space-first and time-first approaches to classifying satellite imagery, as well 

as the impact of methods for improving model performance and inclusion of additional input 

variables. 

2. Theoretical concepts mobilised 

2.1. Analysis-Ready Data and Data Cubes 

Whilst availability of remote sensing data has greatly improved, the accessibility of its use and analysis 

remains a limitation in some cases. Obstacles to the use of remote sensing data include the pre-

processing steps such as radiometric and atmospheric correction, as well as increasing data volumes 

which limit the feasibility of downloading EO data to desktop environments when the aim is to study 

large spatial, multi-temporal datasets (Szantoi et al., 2020). The standard of Analysis-Ready Data (ARD) 

has been developed to counter the limitations presented by complex pre-processing and provides 

data processed to a minimum level to  facilitate its use. The Committee on Earth Observation Satellites 

(CEOS) defines ARD as “satellite data that have been processed to a minimum set of requirements and 

organized into a form that allows immediate analysis with a minimum of additional user effort and 

interoperability both through time and with other datasets” (CEOS, 2022). ARD can give users access 

to data which is already aggregated in space and time in analysis appropriate ways and allows the 

circumnavigation of typical problems such as cloud cover (Potapov et al., 2020) which can affect the 

use of these images in LC classification due to inconsistencies (Inglada et al., 2017).  

The Swiss Data Cube (Chatenoux et al., 2021) provides ARD covering Switzerland since 1984, providing 

the spatial and temporal continuity necessary for national land cover mapping efforts with a full 

catalogue of Landsat and Sentinel ARD and additional derived products (The Swiss Data Cube, 2017). 

Data Cubes allow users to counteract the ‘Big Data’ challenges posed by large volumes of EO data, by 

providing “an architecture allowing a time-series multi-dimensional stack of spatially aligned pixels” 

(Giuliani et al., 2017, pg. 103) with which the user can directly start analysis. Switzerland therefore has 

a feasible, low-cost, data source for consistent land cover map production, provided an appropriate 

methodology can be applied. 
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2.2. Operational Land Cover maps 

Beyond a single snapshot of LC, operational LC maps are data products which are accurate, reliable, 

and can be produced in accordance with a pre-defined schedule at regular time intervals (Inglada et 

al., 2017). Various operational LC classification systems and spatial data products have been 

developed by national and international agencies, and Table 1 gives an overview of such products 

which cover Switzerland. Most of these LC products are static, providing a discrete snapshot of LC for 

a particular year, however Google’s Dynamic World dataset provides near real-time LC classification 

of Sentinel-2 imagery with an updated classification every 2-5 days (Brown et al., 2022). The 

production of high-resolution LC data is one of the central aims of the Sentinel-2 mission, and indeed 

it is now widely used for this in many regions (Phiri et al., 2020). 

Whilst recent releases of global land cover datasets have improved spatial and temporal resolution, 

the implementation of these datasets at the local scale is often limited by their low thematic 

resolution, and the lack of training data on the global scale. The exact impact of this on classification 

accuracy remains a gap in research (Inglada et al., 2017), but development of LC data is increasingly 

focused on the production of improved LC data for small-scale applications. Standardised approaches 

to LC classification which can be linked to EO data cubes have become increasingly popular, such as 

Living Earth which aims to aid in coherent reporting towards SDG targets, but these can be restrictive 

in terms of the resources required to produce input data which has been determined to be useful for 

one country (Owers et al., 2021). Additionally, some datasets attempt to provide generic data 

variables for  essential land cover attributes to counter the specificity of thematic classes, such as data 

on imperviousness, forest, grassland, wetland and water bodies generated by the European CORINE 

project (Gómez et al., 2016).  

The ArealStatistik datasets are distinct from most operational LC maps, as the remote sensing data 

they are based on is in the form of aerial photographs rather than satellite imagery. These 

photographs are taken over a 6-year survey period and visually inspected to assign LC and LU classes 

to sample points on a 100m by 100m grid. The resulting point dataset covers Switzerland at a 

resolution of 100m, with a total of approximately 4 million points nationwide. Transformation to a 

gridded map involves assigning each cell assigned the value of the point at its lower-left corner, 

however the classification remains valid only for the point to which the label is assigned. 

The size of estimation error for the ArealStatistik is based on the proportion of the dataset considered 

and decreases with the number of data points considered. At the national level the largest estimation 

error for a Basic Category is around 6.5% (OFS, 2022c), compared to up to 67% for the Copernicus 

CORINE Land Cover (CLC) 2012 dataset (Jaffrain, 2017). Recent developments to refine the 

interpretation of the source aerial photography using Deep Learning, which will be implemented for 

the next dataset to be released, present an overall accuracy of over 90% (OFS, 2022b).   

Table 1 - Comparison of operational Land Cover datasets. 

Name Producing 
agency 

Spatial 
coverage 

Source imagery Cell 
size 

Temporal 
resolution 

Thematic 
resolution 

ArealStatistik Swiss Federal 
Office of 
Statistics 

Switzerland Aerial photography 100 m 1979 - 1985, 
1992 - 1997, 
2004 - 2009, 
2013 - 2018 

27 classes 
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CORINE Land 
Cover (CLC) 

EEA Copernicus 
Land Monitoring 
Service 

Europe Sentinel-2 gap filled 
with  Landsat-8 
(2018 map) 

100 m 1990, 2000, 
2006, 2012, 
2018 

44 classes 

GLC2000 EC Joint 
Research Centre 

Global and 
Regional 
datasets 

SPOT 1 km 2000 19 classes 

Dynamic 
World 

Google Global Sentinel-2 10 m Every 2-5 
days 

9 classes 

ESRI Land 
Cover 

ESRI Global Sentinel-2 10 m Annual 
2017-2021 

10 classes 

2.3. Machine Learning for Land Cover Classification 

The use of pixel-based supervised ML methods to automate regular production of datasets has had 
success at spatial scales from the regional to global (Inglada et al., 2017). Comparisons show that 
supervised classification methods, in which the ML model is provided with a training dataset 
containing variables extracted from the images and the matching ground truth values for these 
variables, generally outperform unsupervised methods (Holloway & Mengersen, 2018; Szuster et al., 
2011). However, these methods can sometimes be restrictive in their need for accurate reference 
data. 

The choice of which ML model to use is based on several criteria, including resources for processing 
and availability of training data. For example, ensemble models, in which predictions of multiple 
individual models are combined to produce a result, in general have higher accuracy and can provide 
information on the uncertainty of classifications. However, these models have a trade off with reduced 
interpretability of the model and increased computational complexity (Gómez et al., 2016). Research 
on classification of satellite imagery has shown that Random Forests (RF) and Support Vector Machine 
(SVM) classifiers tend to show the best compromise between accuracy and complexity (Gómez et al., 
2016; Khatami et al., 2016).  

RF is an ensemble learning method based on decision tree algorithms which produces its final 
prediction for each observation through aggregating the predictions of multiple trees (Géron, 2019). 
Decision trees are simple and interpretable algorithms, in which the ‘leaves’ of the tree refer to the 
labels and the ‘branches’ refer to the unique combinations of input variables which produce those 
labels. Within RF, each decision tree is trained on a different random subset of the training data and 
predictions are then based on the majority vote from all of the individual trees (Breiman, 2001). The 
high accuracy and low propensity for overfitting has led to RF being widely adopted as a classifier for 
remote sensing data (Belgiu & Drăguţ, 2016; Talukdar et al., 2020). This method has been successfully 
applied for land cover classification in similar landscapes to Switzerland in France using data from 
Landsat (Pelletier et al., 2016; Inglada et al., 2017). Additionally, RF classifiers can be used to determine 
which input variables provide the most useful information, which helps to reduce the number of 
dimensions within the dataset and therefore reduce the computational complexity of the model 
(Belgiu & Drăguţ, 2016). 

SVM classifiers work by determining a hyper plane, or optimal separation, between two classes within 
a dataset (Géron, 2019). SVMs are known for having a longer training time than RF (Pal, 2005), and 
are more sensitive to the choice of hyperparameters such as the kernel function which enables the 
hyper plane to be fitted. However, they frequently produce higher scores than RF in terms of overall 
accuracy, and their performance is less dependent on the size of training samples than other 
algorithms (Thanh Noi & Kappas, 2018). 

Whilst the pixel-based supervised classification methods described above have shown good results, 
such approaches can be limited by intra-class variability of spectral signatures, similarity of spectral 
signatures between classes and classes which are highly discontinuous at small spatial scales (Stoian 
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et al., 2019). Other approaches include the use of object-based image analysis in which groups of 
spatially contiguous pixels which represent a geographical feature are defined, and the model trained 
to detect these as separate objects (Costa et al., 2018). By far the current state of the art for LC 
mapping are Deep Learning methodologies traditionally applied to image classification such as 
Convolutional Neural Networks (CNNs) (Pelletier et al., 2019). CNNs have been shown to out-perform 
pixel-based classification methods, with their success due in part to an explicit ability to encode spatial 
information contained within satellite imagery, as each prediction involves the values of neighbouring 
pixels (Carranza-García et al., 2019). However, these methods are subject to large requirements for 
computing power and storage space, as well as difficulty in obtaining sufficient reference data.  

2.4. ‘Space-first’ versus ‘time-first’ approaches to LC classification 

Two main approaches to classifying LC from satellite imagery can be identified based on the priority 

placed on the spatial or temporal dimension. Classification of Satellite Image Time Series (SITS) 

maximises the value of big data volumes of EO data, with the high revisit time of satellite imagery 

resulting in a dataset which effectively captures change in LC over time. This is known as a ‘time-first, 

space-later’ approach, with pixels having a stronger temporal autocorrelation than spatial 

autocorrelation (Picoli et al., 2018).  In comparison, the traditional ‘space-first, time-later’ approach 

performs classification solely using spatial dimensions, and differences over time can incorporated at 

a later stage when assessing change detection between already classified images (Camara et al., 2014). 

Space-first approaches have produced widely used datasets based on annual composites (e.g. Hansen 

et al., 2013), however it has been argued that SITS classification enables to capture the dynamics of 

LC classes resulting in a more accurate classifications and greater potential for near real-time 

monitoring (Woodcock et al., 2020).  

With SITS, processes of LC change become an integrated part of the generation of LC data itself 

(Wulder et al., 2018). Variables used in input data such as spectral indices can be highly variable over 

a year, and the incorporation of this temporal variation is a factor which can contribute to improved 

accuracy of classification. For example, variation in vegetation indices calculated from spectral bands 

over time can highlight important phenological differences between different vegetation classes 

(Defries & Townshend, 1994). Despite the advantages of this approach, time-series data can also 

contain a high degree of noise and inter-annual variability, posing methodological challenges as efforts 

to remove this noise to enable use in ML models can remove important information contained within 

the time series (Picoli et al., 2018).  

3. Data 

3.1. Study area 

The study area in the western part of Switzerland between 46.0o to 46.8o latitude and between 5.95o 
and 6.98o longitude is shown in Figure 2. This region contains the urban centres of Geneva and 
Lausanne, as well as the surface of Lake Geneva which lies within the Swiss territory. The climate is 
temperate with a high degree of topographical variation between the mountains in the south-east of 
the study area and the plateau in the north-east. 

3.2. Reference data 

Reference data used is the ArealStatistik for the 2013-2018 survey period (OFS, 2022), which provides 
a classification for points spaced at 100m. The subset of reference data covering the study area 
includes around 410,000 features. The LC nomenclature used distinguishes between 6 ’Principal 
domains’ of Artificial Areas, Grass & Herb Vegetation, Brush Vegetation, Tree Vegetation, Bare Land, 
and Watery Areas, and between 27 “Basic Categories” which fall within these Principal Domains. 
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3.3. Input data 

ARD was provided by the Swiss Data Cube which collates available satellite imagery for Switzerland 
(Chatenoux et al., 2021). The present study uses data from Sentinel-2 which has been pre-processed 
to produce top-of-atmosphere reflectance and summarised to give the median annual value. Location 
of the study area within Switzerland and the coverage of the study area by Sentinel-2 tile 31TGM are 
shown in Figure 2. Reference data were reprojected into the coordinate system of the Sentinel-2 
imagery (EPSG:4326), and the surface reflectance values for each band extracted for each point to 
create the dataset used in training and validation. Median data for 2018 was used for training all 
models, with data from 2021 used for additional testing to assess transferability of the model over 
time. 

 

Figure 1 - Study area as a) shown in Google Satellite imagery, b) position within Switzerland, c) as covered by Sentinel-2 tile 
31TGM. 

The characteristics of the spectral bands of the Sentinel-2 images used in the classification  models 

are provided in Table 2. 

Table 2 - Characteristics of Sentinel-2 data. 

Band Spectral Resolution (nm) Spatial Resolution (m) 

Band 1 – Coastal aerosol 443 60 

Band 2 – Blue 490 10 

Band 3 – Green 560 10 

Band 4 - Red 665 10 

Band 5 – Red Edge 1 705 20 

Band 6 – Red Edge 2 740 20 

Band 7 – Red Edge 3 783 20 
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Band 8 – NIR 842 10 

Band 8A – Red Edge 4 865 20 

Band 11 – SWIR 1 1610 20 

Elevation and DEM derivatives have been shown to be auxiliary datasets for LC classification which 

improve model performance, particularly for forest categories (Zhu et al., 2016), and were included 

as additional input data for one iteration of classification. The DEM used was the 25m grid Digital 

Height Model DHM25 (swisstopo, 2022). Slope and aspect were calculated from the elevation field. 

Elevation and derivatives were converted from EPSG:21781 to EPSG:4326 to enable interoperability 

with the other datasets, which led to a slight loss of extreme values. 

4. Methods 

4.1. Machine Learning models used 

Classification algorithms were implemented using the sklearn Python module. Initially, classification 
on the median 2018 Sentinel-2 images was compared using RF and SVM with the default parameters. 
Multinomial Linear Regression (MLR) was also included in comparison as a simple baseline model to 
set a benchmark for comparison with more complex models. The trained RF model was used to classify 
the 2021 Sentinel-2 data, which was then compared to the 2013-2018 ArealStatistik labels. Results for 
the 2018 median model were then compared to those produced using RF through the R package SITS 
(Satellite Image Time Series Analysis for Earth Observation Data Cubes) (Gregory Giuliani, internal 
communication). The SITS package provides an interface to connect to data cubes, using a time-first, 
space-later approach to LC classification which optimises the use of time-series input data (Simoes et 
al., 2021). The time series for each instance of the dataset is incorporated in the classification.  

4.2. Sampling strategy 

For comparison with data produced using SITS, training and validation features were selected 
randomly at a ratio of 60:40, with equal class distributions between the training and validation sets. 
The resulting class distribution of pixels used for training and validation for LC Principal Domains is 
given in Figure 4.  

 

Figure 2 - Class distribution of samples for LC Principal Domains training and validation data sets.  
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The class distribution of pixels in the dataset used for training and validation for LC Basic Categories 

is given in Figure 4. 

 

Figure 3 – Class distribution of samples for LC Basic Categories. Descriptions corresponding to the class codes are included in 
Annex 1. 

The variation in land area coverage of different LC classes is a frequent problem in the supervised 

classification of LC (Douzas et al., 2019). To attempt to counteract the class imbalance evident above, 

RF-2018 was run once with balanced class weights, and once with oversampling using Synthetic 

Minority Over-sampling Technique (SMOTE). SMOTE is a data augmentation technique which trains 

the RF model with additional synthesised instances of minority classes which are duplicated from the 

actual minority data (Chawla et al., 2002).  

4.3. Spectral indices 

Inclusion of spectral indices has shown to increase classifier performance through providing 

information regarding the non-linear relationships which exist between the different spectral bands 

of a satellite image (Chaves et al., 2020; Inglada et al., 2017). 3 commonly used spectral indices were 

therefore included as input data to the model: Normalised Difference Vegetation Index (NDVI) for the 

identification of vegetation, Normalised Difference Building Index (NDBI) as a measure of built-up 

areas and Normalised Difference Water Index (NDWI) for the identification of water. The equations 

for these indices are given below. 

Equation 1 - Normalised Difference Vegetation Index (NDVI): 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Equation 2 - Normalised Difference Building Index (NDBI): 

𝑁𝐷𝐵𝐼 =  
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

Equation 3 - Normalised Difference Water Index (NDWI): 

𝑁𝐷𝑊𝐼 =  
𝐺 − 𝑁𝐼𝑅

𝐺 + 𝑁𝐼𝑅
 

Figure 4 shows the mapped values of these spectral indices for the study area. 
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Figure 4 - Calculated spectral indices for 2018 median Sentinel-2 images (a) NDVI, (b) NDBI, (c) NDWI. 

4.4. Feature importance 

Permutation feature importance was calculated to determine the contribution of auxiliary input 

data. The permutation feature importance is the decrease in accuracy of the model that occurs 

when the values of an individual feature are randomly shuffled, and is therefore representative of 

the degree to which the model is dependent on the information provided by the feature.  

4.5. Optimised RF model 

RF were also used to run additional classification tests to assess the impact on classifier performance 

of a spatially sensitive selection of training and validation data, as well as the incorporation of 

hyperparameter tuning. 

4.5.1. Sampling strategy considering spatial autocorrelation 

For additional model testing, the dataset was divided into 3 sets (training, validation & test) to enable 
tuning of hyperparameters to optimise model performance. 

Random selection of training and validation data at the pixel level can lead to model evaluation over-
estimating the performance of a classifier, due to the potential for spatial autocorrelation between 
instances (Inglada et al., 2017; Tonini et al., 2020). A potential strategy to overcome this is to select 
training and validation sets from separate polygons (Pelletier et al., 2016), however this approach 
could introduce greater imbalance between LC classes. Hence, data was split using spatial k-fold cross 
validation, using an approach similar to the method described in Tonini et al. (2020).  

For this method, the area of interest was overlaid with a grid of 900 10km2 cells, and each data point 
was then assigned to its overlaying cell. Data for 54 cells, which corresponded to around 12% of the 
total data, was set aside to form the test set. The cell identifier for the remaining instances which was 
used as the ‘group’ input for a grouped k-fold split, which split data into two sets for training and 
validation, whilst ensuring that instances for each set originated from different cells. 7 folds were used 
in the grouped k-fold split, to ensure consistency in the size of the validation and test sets (the size of 
the validation set being 1/k of the total input to a k-fold split). The final ratio was 76:12:12 for training, 
validation, and testing.  
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Figure 5 – Visualisation of randomly assigned spatial grid used for data split. 

The class distribution of samples used for training, validation and test is shown in Figure 6, where 

the values for training and validation represent the average distribution over the 7 cross-validation 

folds. 

 

Figure 6 - Distribution of samples for LC Principal Domains using random selection of grids in Figure 5. 

4.5.2. Optimisation of Random Forests using hyperparameter tuning 

Hyperparameters are the parameters of the machine learning algorithm, which can have an important 

impact on the performance of a model. Evaluating the performance of different hyperparameter 

combinations on a subset of the training data allows for the selection of the optimal model to use for 

full training (Géron, 2021). The hyperparameters evaluated for the RF model were the number of trees 
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in the forest (‘N estimators’), the maximal depth of each tree (‘Max depth’), the minimum samples 

required to split an internal node (‘Min samples split’), and the minimum samples per node (‘Min 

samples leaf’). These hyperparameters enable the model’s approach to grouping similar features to 

be refined. 

Successive halving grid search was implemented to perform a hyperparameter search using the 

training and validation sets. This method begins by evaluating model performance over all 

hyperparameter combinations provided using a small sample of data. Under successive iterations, the 

best candidates from the previous round are selected and the model is re-evaluated using a greater 

number of samples.  

The range of hyperparameters used in grid search and the results of the hyperparameters leading to 

the best model performance, determined by highest overall accuracy, are displayed in Table 3. Whilst 

other work has included ‘N estimators’ of up to 400 in hyperparameter determination, this option was 

omitted due to the diminishing return in increased accuracy relative to the vastly increased 

computation time required (Pelletier et al., 2016). 

Table 3 – Range of values used for RF hyperparameter search, and hyperparameters of the highest performing model. 

Hyperparameter Range Best 

N estimators 50, 100, 150, 200 200 

Max depth 10, 25, 50 50 

Min samples split 2, 5, 10 10 

Min samples leaf 1, 10, 25, 50 1 

5.5. Performance metrics 

The main assessment of model performance uses the confusion matrix, a table in which the rows 

represent the actual classes as provided by the reference data, and the columns represent the 

predicted classes as produced by the classifier. The values on the diagonal of the table are therefore 

the results which have been correctly classified by the model, with all other values indicating 

misclassifications. The overall accuracy of classification is calculated as the sum of all diagonal values 

divided by the sum of all matrix values. 

Additionally, several metrics were calculated based on the confusion matrix, to give further 

information on the model’s performance:   

• Recall, or producer’s accuracy, refers to the proportion of predictions of a land cover class 

which are correct, relative to the total number of pixels within the ground truth class. 

• Precision, or user’s accuracy, refers to the proportion of on-the-ground land cover classes 

correctly predicted.  

• The weighted F1 score represents a weighted average of the model’s precision and recall, and 

is an effective summary of model performance on datasets with imbalanced class 

distributions. 

6. Results 

RF produced the highest overall accuracy score of all models compared, but in all cases the results of 

all models run using the 2018 median data were lower than those run using the SITS methodology. 

Whilst SVM had only produced a slightly lower accuracy, training time took over 6 hours compared to 

just two minutes for the RF runs. MLR produced the lowest scores, indicating a complexity in the 
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relationships between features and their class which is not effectively captured by simple models. The 

use of imbalanced training data is a known issue for ML algorithms such as RF, leading to poor 

performance for minority classes. However, oversampling and class balancing did not increase the 

model performance, and actually decreased accuracy, suggesting that the minority classes might 

actually have low discriminatory power and increasing their importance does not provide increased 

information to the model. Inclusion of DEM and its derivatives resulted in the greatest improvement 

in model performance, increasing accuracy to 87.1%. For all models, the weighted F1 score is slightly 

lower than the overall accuracy, showing a slightly detrimental effect of the imbalanced class 

distribution. 

Table 4 - Performance metrics of ML models using default parameters to predict ArealStatistik Principal Domains. 

 Overall accuracy F1 

RF (2018 median) 85% 84.7% 

RF (SITS) 88.7% 88.2% 

RF (with DEM) 87.1% 86.2% 

RF (class balanced) 84.8% 83.4% 

SVM (2018 median) 83.2% 81% 

RF (with SMOTE) 82.9% 83.3% 

MLR (2018 median) 82% 79.8% 

The results of feature importance in Figure 7 indicate that the Green spectral band provides by far 

the greatest information to the model. The inclusion of spectral indices NDVI, NDBI and NDWI in the 

input features has a relatively low effect on the classification accuracy, although NDWI is the most 

important spectral index for this dataset.  Elevation and slope provide greater information to the 

model as auxiliary variables.  

 

Figure 7 - Permutation feature importance for RF (with DEM), in the form of mean accuracy decrease resulting from feature 
omission. 

Figure 8 shows the precision and recall scores for each Principal Domain. Performance for the 

individual classes of Watery Areas, Tree Vegetation and Grass & Herb Vegetation are comparable 

between the two approaches with low levels of error for each of these classes. The model performs 

poorly in terms of recall for Brush Vegetation and Bare Land, with over 56% of Brush Vegetation pixels 

mis-classified as Grass & Herb Vegetation. Precision for these categories is higher than recall, 
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indicating a lower proportion of other classes are incorrectly classified as Brush Vegetation or Bare 

Land. In general, the SITS model performs better for all LC classes. Irrespective of model used, the 

Brush Vegetation class shows very low recall compared to other classes.  

 

Figure 8 – Precision and recall for the highest performing RF-2018 model, and RF using SITS. 

Training the RF median model using the 27 basic categories results in an overall accuracy of 77.6% 

and an F1 score of 72.6%, compared to an overall accuracy of 88% achieved using SITS. The model 

performs best for Grass & Herb Vegetation, Closed Forest, Water and Glacier/Perpetual Snow Basic 

Categories. As with the Principal Domains, the minority LC classes within the Basic Categories are not 

well classified, there are few other LC types which are incorrectly classified as members of these 

classes, but the precision score for many LC types is very low or zero.  

 

Figure 9 - Precision and recall by class for 2018 Basic Categories. Descriptions corresponding to the class codes are included 
in Annex 1. 
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Some decrease in performance when applying the trained RF model to Sentinel-2 data from 2021 

could be attributed to the use of outdated reference data, as the average annual rate of change 

between the 2004-2009 and 2013-2018 ArealStatistik datasets was approximately 0.57%. However, 

the observed decrease was 6% and therefore much more than could be expected from normal 

processes of LC change, indicating low transferability of the model to other years. Performance per 

class on the 2021 test data shown in Figure 8 is consistent with performance on the validation data, 

with relatively weak scores for Brush Vegetation and Bare Land. 

 

Figure 10 – Precision and recall by principal domain for RF median model applied to 2018 validation data and 2021 test 
data. 

Some differences visible in Figure 9 indicate a weakness in the transferability of the model across 
time. For example, between 6.8o and 6.98o longitude, the model classifies large new areas of Bare 
Land and Watery Areas, but the scale of such changes does not reflect existing LC change processes 
in Switzerland (OFS, 2022). In the case of new Watery Areas, this could reflect an artefact of median 
values of the imagery being influenced by the presence of seasonal snow cover. Patches of vineyards 
around Lake Geneva, are not correctly classified, as would be expected from the model’s poor ability 
to classify Brush Vegetation. 
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Figure 11 – Maps showing reference ArealStatistik data for 2013-2018 (right), and classification results for 2021 median 
Sentinel-2 data (left). 

Running the RF model with hyperparameter optimisation and controlling for spatial autocorrelation 

resulted in only a minor improvement in model performance with an overall accuracy on the test set 

of 85.3%, however the total training time was increased to 3.5 hours. Relative performance of the 

model for minority classes was consistent with the other methods shown above. Compared to an 

initial study which used a similar optimised model applied to several individual dates of Landsat-5 

images, use of the median annual Sentinel-2 data led to higher overall accuracy (85% versus 76%).  

Table 5 – Performance metrics for hyperparameter optimised RF model. 

 Overall accuracy 

Training 93.8% 

Validation 85.7% 

Test 85.3% 

7. Discussion 

Comparison of time-first and space-first approaches 

High overall accuracy and F1 scores of the classification results are encouraging but mask an important 

inter-class variation. In particular, in the Plateau region of Switzerland which features in the study 

area, the rate of change in Brush Vegetation categories has been highly dynamic over the last 33 years 

of ArealStatistik surveys (OFS, 2022b). Poor performance for these classes raises concerns over the 

analysis potential of these classified datasets to fully inspect such changes which could be necessary 

to understand pressures acting on LC over time. The high scores achieved for LC classes within the 

Watery Areas principal domain and Closed Forests could reflect the large contiguous lake and forest 

areas present in the dataset and the high accuracy often achieved in mapping areas of homogenous 

land cover (Tsutsumida & Comber, 2015). The results above indicate that spatial autocorrelation did 

not lead to significant overestimation of performance after training, so the high performance of these 
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classes may be because of similar spectral signatures and low proportion of edge cases found in these 

contiguous areas, rather than the effect of neighbourhood conditions. 

Within the ML literature, the addition of temporal features to LC classification models has been shown 

to have varied effects, with some studies finding their inclusion results in only minor gains in accuracy 

which are outweighed by additional computational cost (e.g. Pelletier et al., 2016) and others finding 

clear accuracy gains with time-series metrics compared to single-date results (Franklin et al., 2015). 

Here, inclusion of the full time series of data through the SITS method outperforms the base RF model 

by 3.7% and remains the most accurate method of all model iterations considered despite efforts to 

improve performance through the addition of auxiliary input variables and efforts to balance class 

distribution. For this dataset, the use of a time-first approach therefore appears to be superior, and 

crucially key gains are presented in classifying the minority classes in Brush Vegetation.  

The inclusion of spectral indices provided little additional information for the RF model using median 

data, and in the case of NDVI and NDWI this may be due to the median value not fully capturing the 

information which can be derived from these indices. Incorporation of the whole annual NDVI cycle 

has shown to be effective for classifying shrub vegetation (Evans & Geerken, 2006) with the full 

potential of information on phenological variation provided by vegetation indices helping to improve 

the separability of LC classes (Chaves et al., 2020). The space-first approach could be improved through 

the inclusion of additional spatial predictors such as distance-to metrics which take into account the 

likelihood of certain LC classes occurring next to each other (Hermosilla et al., 2022).  

Quality of training samples 

Relatively poor classification of Brush Vegetation categories is however a constant feature irrespective 

of model choice, and the inability of oversampling or class balancing techniques to resolve the issue 

of imbalanced data in this study suggests that the ground-truth data for the minority classes such as 

Brush Vegetation has low discriminatory power. This could arise from an inability to generalise the 

spectral signatures to the same extent as the training labels. Vineyards, for example, can be 

characterised by variations in interrow vegetation from one field to another, depending on the specific 

management practices applied (Fox et al., 2012). 

Indeed, a consistent challenge in developing LC classification models is ensuring the existence of 

sufficient high-quality training data (Pandey et al., 2021), and furthermore in ensuring that the training 

data are representative of the classes assigned. This can be secured through adopting a sampling 

design which chooses features which accurately represent the range of spectral diversity within LC 

classes, and effectively include spectral sub-classes, or by removing mixed and outlier pixels from the 

training data (Kavzoglu, 2009). Oversampling methods tailored for spatial land cover classification 

such as Geometric-SMOTE may produce better results than the standard SMOTE method used here 

due to their ability to create an increased diversity of generated instances (Douzas et al., 2019)  

The presence of ‘noise’, taking the form of non-systematic errors or confusion between the features 

of an instance and its class, in the labels of training samples can have an important detrimental impact 

on the accuracy of classifiers (Frenay & Verleysen, 2014). Whilst error of the ArealStatistik is generally 

accepted to be low, such large-area classifications can still be subject to bias and inconsistency brought 

in during interpretation. Additionally, subtle changes in ground-truth values may be missed by the fact 

that the ArealStatistik surveys are only accurate for one of the six years they cover. For an operational 

LC dataset to move past use of the ArealStatistik would require creation of a new ground-truthed 

training dataset which would likely be prohibitively resource-intensive. Choice of classifier can also 

have an effect, for example the RF classifier achieves high robustness to random and systematic label 
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noise for all the tested configurations (showing to be more robust than SVM for instance) (Pelletier et 

al., 2017). Uncertainty in the attribution of training labels is therefore unlikely to have a noticeable 

effect in this study.  

Integrated model approaches and data 

It is increasingly recognised that LC classification needs to harness the potential of big EO data, and 

several platforms for processing large volumes of SITS data exist including Google Earth Engine and 

Open Data Cube (Simoes et al., 2022). However, assessment of the feasibility of these methods for 

producing operational land cover products must consider ease of use and reproducibility. In addition 

to improved model performance, a further benefit of using software packages such as SITS is that 

default values and parameters have been selected based on expert assessment and so individual users 

do not require advanced skills in ML in order to run the classifications (Simoes et al., 2022). As shown 

above, optimisation of the model in the form of hyperparameter tuning can be considered as non-

essential for RF classification. Additionally, a direct connection to a data cube can be made, which 

facilitates the automated and iterative classification of big data volumes.  

Perspectives 

Improvement of classification for vegetation categories is priority to be able to develop these datasets 

into operational land cover products. As has been shown for running RF with median data, the 

inclusion of auxiliary input variables, and refinement of the model, may lead to further gains in 

accuracy of the SITS approach. The benefit of adding DEM features, a static variable, to the space-first 

method is clear for a region with such varied topography and a flat plateau section mainly covered by 

agricultural, residential features and water bodies, and could add additional discriminatory power to 

time-first models as well. Additional auxiliary datasets such as runoff coefficients could help to 

distinguish between some categories such as vineyards and other low-growing vegetation (Fox et al., 

2012).  

An important development would need to be testing of the model’s applicability over time, as the 

spatial distribution of accuracies can vary over time as evidenced here (Tsutsumida & Comber, 2015). 

Time-first approaches in the form of Temporal CNNs have been shown to further increase the accuracy 

of SITS classification (Pelletier et al., 2019), however this requires greater effort in the creation of 

ground truth maps to be able to train the model on patches (Carranza-García et al., 2019). The current 

point-based reference data of the ArealStatistik would be insufficient for this. The advantages of using 

Sentinel-2 data, with its increased spatial and temporal resolution, are unfortunately limited by the 

lack of sustained time-series available as the mission started in 2017. Methodologies combining 

Landsat-8 and Sentinel-2 data have proved to solve problems with gaps in time-series and also reduce 

uncertainties in Land Use/Land Cover studies, with combined use of the two systems providing repeat 

observations every 2 to 5 days (Chaves et al., 2020). 

8. Conclusions 

The methods explored produce overall accuracy scores which are comparable to the current standard 

of operational land cover products. The LC data produced by applying the SITS methodology to ARD 

from the Swiss Data Cube have the highest accuracy, and meet the criteria for a reproducible, 

automatable, spatially and temporally continuous dataset which can adapt to nomenclature changes 

(Inglada et al., 2017). However, whilst the overall accuracies achieved are acceptable for static LC 

maps, the use of these classified datasets for specific applications such as pixel-level analysis of LC 

change may be limited, particularly for classes where the rate of change is lower than the degree of 

error (Inglada et al., 2017). The assessment of LC trends and dynamics is therefore feasible using ML 
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classified datasets; however, any such study will need to consider the uncertainty the model error 

brings to any conclusions drawn, especially if these relate to minority LC classes. The feasibility moving 

from a producing a single well-classified image to a consistent, annual LC dataset is however 

questionable, due to the lower accuracy achieved for the 2021 Sentinel-2 data. Testing of the 

methodology using SITS may produce better results due to its inherent consideration of temporal 

autocorrelation. 

As is a typical issue with studies involving ML methods, the realisation of the objectives for this study 

was limited by computational capacity and the time taken to run iterations of more complex model 

versions with more features. Increased amounts of input features are known contribute to improved 

performance, and the ability to test the use of multiple time-slices throughout the year may have 

added insight into the information added by time-series data. The extension of testing to the national 

level is a key step in assessing the feasibility of these methods to produce operational LC data products 

for Switzerland, but the expansion of the spatial scope of this study would require use of high-

performance computing clusters. Generalisation from the regional scale to a nationally appropriate 

model can be difficult, and will certainly require further testing, but could be aided by a regionalised 

approach to the selection of training data (Hermosilla et al., 2022). Expansion of feasibility studies to 

the alpine regions is a crucial next step, as this would include increased representation of areas of 

forest and glaciers which are key priorities for LC monitoring.  

9. Code and data availability 

Code used is available at https://github.com/isabelntho/CGEOM. ArealStatistik data is available 

open source from https://www.bfs.admin.ch/bfs/fr/home/services/geostat/geodonnees-statistique-

federale/sol-utilisation-couverture/statistique-suisse-superficie.html. 
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11. Annex 
Annex 1 - Codes of Basic Categories 

Code Description 

11  Consolidated surfaces 

12  Buildings 

13  Greenhouses 

14  Gardens with border and patch structures 

15  Lawns 

16  Trees in artificial areas 

17  Mix of small structures 

21  Grass and herb vegetation 

31  Shrubs 

32  Brush meadows 

33  Short-stem fruit trees 

34  Vines 

35  Permanent garden plants and brush crops 

41  Closed forest 

42  Forest edges 

43  Forest strips 

44  Open forest 

45  Brush forest 

46  Linear woods 

47  Clusters of trees 

51  Solid rock 

52  Granular soil 

53  Rocky areas 

61  Water 

62  Glacier, perpetual snow 

63  Wetlands 

64  Reedy marshes 

 


