
 

1 

 

 

 
 

 

Complementary Certificate in Geomatics 
 

 
 

Chlorophyll-a estimates in the Nuup Kangerlua using remote sensing 

data and its potential use for greenhouse gases sea-air fluxes analysis 
________________________________________________________________ 

 

 

Thesis presented by 

Paul Gabriel Molineaux  

 

 

 
Under the direction of 

Prof. Gregory Giuliani, Head of the Digital Earth Unit [GRID – Geneva] & Senior 

Lecturer in Earth Observations [UNIGE] 

 

University of Geneva – Faculty of Social Sciences 

 

 

 

 

2023 



 

2 

 

Copyright  
Quotations from this thesis are permitted only as a comment, reference, or demonstration to its 

user. The citation must indicate the source and the name of the author. The Swiss Federal Cop-

yright Act is applicable. 

 

Acknowledgement  
First of all, I would like to warmly thank my thesis director, Prof. Gregory Giuliani, for his 

continuous support and help which allowed me to work with confidence and efficiency. I would 

also like to thank Prof. Daniel Frank McGinnis and PhD Cesar Ordõnez for paving the way for 

me to work on greenhouse gases in the Arctic. Leila Hottinger and Caroline Guenat also pro-

vided me a more than welcome help by working as master students on greenhouse gases in the 

Arctic before me. They produced the original greenhouse gases dataset used in this thesis.  

 

Finally, I give a special thanks to Quinten Vanhellemont from the Royal Belgian Institute of 

Natural Sciences for the development of ACOLITE and his countless answers on forums about 

atmospheric corrections and chlorophyll estimates.  

  



 

3 

 

Abstract 
Fjords play an important role in the carbon cycle as they are believed to be strong carbon diox-

ide (CO2) uptake places and emitters of methane (CH4). Net primary production (NPP), with 

chlorophyll-a (Chl-a) as proxy, also plays a role in the carbon cycle as CO2 is consumed in 

photosynthesis and CH4 produced through the depletion of organic matter. This study aims at 

providing remote sensing estimates of Chl-a to better understand the GHGs fluxes occurring in 

fjords, with the case study of the Nuup Kangerlua. Three Chl-a retrieval algorithms have been 

compared to select the most adapted for the study region. To produce estimates with a suffi-

ciently high spatial resolution for this fjord, it is necessary to use Sentinel -2A (S2A) scenes. 

Then results have compared with Sentinel-3A (S3A) scenes as the Ocean and Land Color In-

strument (OLCI) is providing ready-to-use Chl-a estimates. The data produced with this remote 

sensing study has been added to a greenhouse gases (GHGs) dataset to analyze the fluxes of 

CO2 and CH4 in Nuup Kangerlua. The analysis indicates that the study region is an important 

sink of CO2 with an average of -17.65 (±17.42) [mmol m-2 d-1]. It corresponds to an annual 

uptake of approximatively -77 [g C m-2 y-1]. It is an emitter of CH4 with an average of 14.67 

(±19.47) [μmol m-2 d-1] during the period of measurements. It corresponds to annual emissions 

of approximatively 0.06 [g C m-2 y-1]. Glacial meltwater inputs are a driver of the strong CO2  

no main driver of the CH4 fluxes was identified. 
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1. Introduction 
The Arctic Ocean plays an important role in the carbon cycle as it is believed to be a net sink 

of CO2 and a net source of CH4 (Parmentier et al. 2013; Weber et al. 2019). More specifically, 

fjords tend to be hotspots of these sources and sinks (Bonaglia et al. 2022; Meire et al. 2015). 

However, the scale of the carbon cycle in the Arctic is still subject to uncertainties (McGuire et 

al. 2009; Saunois et al. 2020). These uncertainties are enhanced by the fast warming of the 

region (McGuire et al. 2009). In addition, the remoteness of the Arctic makes the collection of 

in-situ data complex and expensive. It emphasizes the opportunity that remote sensing data 

represents.  

 

The decrease in sea-ice extent is responsible for an increase of up to 30% of net primary pro-

duction (NPP) in the Arctic Ocean between 1998 and 2009 (Arrigo et van Dijken 2011). It could 

enhance the uptake of CO2 of the ocean (Meire et al. 2015; Ruiz-Halpern et al. 2010) and the 

emissions of CH4 through the depletion of organic matter by methanogenic Archaea in anaero-

bic environments (Saunois et al. 2020). However, the changes in NPP and the carbon fluxes 

vary both spatially and seasonally. Arrigo et Van Dijken (2015) found that a portion of Baffin 

Bay and the Greenlandic outflow shelf show no increase of NPP over the period 1998-2012, 

whereas the Beaufort Sea and Barents Sea show a positive trend. In addition, the complex hy-

drology of fjords is upset by the increase in meltwater inputs due to global warming and it could 

render fjords less productive (Holding et al. 2019).  

 

This study aims to add remote sensing data of chlorophyll-a (Chl-a) to a greenhouse gases 

(GHGs) fluxes dataset in Nuup Kangerlua, on the south-west coast of Greenland. Before ad-

dressing the problematic of this work, it is necessary to review the challenges that remote sens-

ing of Chl-a represents in the Arctic Ocean.  

 

1.1 Remote Sensing Chlorophyll-a estimation in the Arctic Ocean 

1.1.1 Challenges 
Estimating Chl-a in the Arctic Ocean using ocean colour remote sensing presents serious chal-

lenges. High and persistent cloud cover and large river runoffs make arctic waters different 

from the rest of the world’s oceans (Arrigo et al. 2011; Carmack et al. 2006). Freshwater inputs 

from river runoffs tends to increase the presence of coloured dissolved organic matter (CDOM) 

which absorbs wavelengths strongly in the blue and much less in the green, as Chl-a. It can 

contribute more than Chl-a in the absorption of these wavelengths (Matsuoka et al. 2009) and 

thus lead to overestimate Chl-a when using algorithms based on these wavelengths to estimate 

Chl-a concentration (Lewis et al. 2016).  

 

In addition, Chl-a is generally used as a proxy of NPP or to calculate it through algorithms. 

However, the large solar zenith angles at high latitudes tends to make phytoplankton increase 

their Chl-a concentration to absorb enough light. As a result, the phytoplankton absorbs less 

light per unit of Chl-a, thus leading to an overestimation of NPP (Arrigo et al. 2011).  
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Ocean colour remote sensing of Chl-a is based on the surface upwelling radiance, occulting the 

processes occurring deep in the mixed layer (Martin et al., 2010). If the subsurface Chl-a max-

imum develops itself deep in the mixed layer, it can lead to underestimate the Chl-a concentra-

tion in the water column (Arrigo et al. 2011).  

 

According to Arrigo et al. (2011) and using Sea-viewing Wide Field-of-view Sensor (Sea-

WiFS), all these factors tend to compensate each other over the entire Arctic Ocean. However, 

the presence of CDOM is stronger near freshwater inputs (Lund-Hansen et al. 2010) and can 

thus increase the error in a fjord system.  

 

1.1.2 The Nuup Kangerlua  
The Nuup Kangerlua is located on the western coast of Greenland and Nuuk, the capital of 

Greenland, is situated at the mouth of the fjord. It is subject to the challenges presented above, 

but higher variability of optic properties can occur in Greenlandic fjords (Mascarenhas et Ziel-

inski 2019). According to Murray et al. (2015) in this fjord, 15-32% of photons are absorbed 

by Chl-a, 7-8% by non-algal particular matter (NAP) and 6-13% by CDOM. The fjord presents 

high variability within itself due to meltwater inputs (Mascarenhas et Zielinski 2019). Fjords 

aren’t necessarily hotspot of NPP. Indeed, meltwater is turbid, limiting the light available in the 

water layer, forcing phytoplankton to stay away from the nitracline. In addition, meltwater is 

freshwater and thus have a high buoyancy. It makes the water column very stratified and limits 

upwelling (Holding et al. 2019). Sills present at the entrance of most fjords also slow the mixing 

of water at the seabed (Straneo et Cenedese 2015). Nonetheless, the Nuup Kangerlua is believed 

to be a large sink of CO2 due to its NPP, and meltwater inputs (Meire et al. 2015). On the other 

hand, the hydrology of fjords reduces the oxygen content deep in the water layer, enhancing 

methane production. The Nuup Kangerlua should thus be an important emitter of CH4 (Bonaglia 

et al. 2022).  

 

1.1.3 Atmospheric corrections and Chlorophyll-a algorithms 
In this work, Sentinel-2A L1C (S2A L1C) scenes are used to estimate Chl-a. They offer a res-

olution of 10 to 20 meters depending on the bands of concern, which is more accurate than the 

traditional Moderate Resolution Imaging Spectroradiometer (MODIS) or the Sea-viewing Wide 

Field-of-View Sensor (SeaWIFs) scenes or even the recent Sentinel-3 Ocean and Land Color 

Instrument (OLCI). However, S2A L1C imagery was designed to be used over land and needs 

atmospheric corrections to be used over water bodies (Chen et al. 2017; Vanhellemont et Rud-

dick 2016). The algorithm ACOLITE1 for atmospheric corrections has shown good perfor-

mance in the processing of water imagery, even for sediment-rich waters (Maciel et Pedocchi 

2022), and was thus used in this work. 

 

Once the scenes have been processed through ACOLITE, it is necessary to use other algorithms 

to retrieve Chl-a estimates. In this work, three methods to retrieve Chl-a will be used and com-

pared. Chl-a is a proxy of phytoplankton as it is its primary photosynthetic pigment. Blue-green 

ratio algorithms are used to estimate Chl-a as this pigment absorbs more blue and red than green 

 
1Natural Sciences.be, https://odnature.naturalsciences.be/remsem/software-and-data/acolite 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite
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light. At the same time, the color of ocean water goes from deep blue to green as phytoplankton 

concentrations increase (O’Reilly et al. 1998). Blue-green ratio thus provides an estimate of the 

presence of Chl-a. The first algorithm for Chl-a retrieval used in this work is the ocean chloro-

phyll (OC3) blue-green ratio algorithm, first developed by O’Reilly et al. (1998) for SeaWIFs 

but it can be used with Landsat-8 or S2A L1C scenes (Franz et al. 2015; Tehrani, Janalipour, et 

Babaei 2021; Vanhellemont et Ruddick 2016).  

 

The second algorithm is derived from the first one but adapted for the Arctic region (OC4L) 

(Cota 2004). To make it work with S2A L1C scenes, one of the original four bands has been 

dropped as it is not directly available with the MultiSpectral Instrument (MSI), this algorithm 

will thus be referred as OC3L.  

 

Both these algorithms have the advantage of providing relatively good results while being easy 

to implement. However, CDOM and NAP can lower the accuracy of these algorithms because 

they present similar absorption spectrum as Chl-a, leading to potential overestimations 

(Vanhellemont et Ruddick 2016). The potential implications of the change from OC4L to OC3L 

will be discussed in Chapter 2.3. 

 

The third algorithm is the red-edge algorithm and has been developed by Gons (2002) for the 

Medium Resolution Imaging Spectrometer (MERIS) but can also be used with S2A L1C im-

agery (Vanhellemont et Ruddick 2016). It should avoid the overestimation due to CDOM and 

NAP. However, the natural variability of the absorption coefficient of Chl-a can lead to some 

errors. It has been developed for very high concentration of chlorophyll (3 to 185 [mg m-3] 

(Gons 2002)) and could thus be inappropriate for a less productive fjord system.  

 

The atmospheric corrections algorithm can also produce uncertainties. Pahlevan et al. (2021) 

tested 8 methods for atmospheric corrections, including the ACOLITE algorithm. They showed 

that the median error ranged between 15-30% and 20-30% depending on the dataset used. They 

further demonstrated that such errors could lead to median error in Chl-a remote sensing esti-

mates ranging from 25 to 70%, limiting the use of the results. However, the main drivers of 

uncertainties are the aerosols which are probably not very present over Greenland and the Nuup 

Kangerlua as it is a remote place. It is at least the case for central Greenland, which presents 

lower than average aerosols concentrations (Von Schneidemesser et al. 2009). 

 

Moreover, newly developed techniques using machine learning provide higher accuracy than 

simple algorithms, but they must be trained with in-situ Chl-a data, which are not available for 

this work (Zhu et al. 2022).  

 

Sentinel-3A (S3A) imagery also provide good products for estimating Chl-a, with a resolution 

of 300X300 m2. Two algorithms are already used in the available products of S3A, one of them 

being the OC4Me2. This algorithm uses four bands, and is a blue-green ratio algorithm as the 

OC3 and the OC3L. It has the same basis as the algorithms developed by O’Reilly et al. (1998) 

 
2 Sentinel online, https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/oc4me-chlorophyll  

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/oc4me-chlorophyll
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but has been adapted by Morel, Huot, et al. (2007). Altogether, it makes the S3A Chl-a esti-

mates a good object of comparison and should provide additional confidence on the S2A L1C 

Chl-a estimates.  

 

1.2 Problematic 
In light of the previous introduction and with the aim of adding Chl-a estimates to a GHGs 

fluxes dataset to discuss their coherence in the absence of calibration with in situ data, it is first 

necessary to address the two following questions:  

 

Q1. Between the OC3, the OC3L and the red-edge algorithms, which one is the most appropri-

ate to use with S2A scenes in Nuup Kangerlua?  

 

Q2. How does it compare with the S3A OC4Me algorithm estimates? 

 

After exploring the various Chl-a estimates, it will be possible to test them with the GHGs 

fluxes dataset by answering the following question:  

 

Q3. Do the dissolved concentrations and fluxes of CO2 and CH4 vary depending on Chl-a esti-

mates? 

 

Whether the answer to Q3 is positive or negative, it will be useful to analyse other variables 

present in the dataset to better understand how concentrations and fluxes vary in Nuup Kanger-

lua. The complex hydrology of a fjord forces different water bodies to coexist with specific 

physicochemical characteristics. These characteristics will be explored to try to answer the fol-

lowing question: 

 

Q4. Do the dissolved concentrations and fluxes of CO2 and CH4 vary depending on the hy-

drology of the Nuup Kangerlua? 
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2. Methodology 
The methodology used for this work is briefly described in Figure 1. There are two distinct 

parts, the production of Chl-a estimates, and its use on a greenhouse gases dataset. The produc-

tion of Chl-a estimates with S2A scenes took several additional steps in comparison to S3A. 

The GHGs dataset was originally produced by two master students, Leila Hottinger and Caro-

line Guenat, and was only slightly adapted and revised for this work (cf. Appendix 3).  

Figure 1. Workflow overview. 

 

2.1 Images acquisition 

The satellites images used in this work, both S2A L1C and S3A were retrieved through the 

Copernicus Browser3. The GHGs dataset, which will be described below in Chapter 2.4, has 

datapoints going from the 24th of June to the 5th of August 2021. After going through the avail-

able S2A L1C images between these dates, three dates were selected to make Chl-a estimates. 

The 22nd of June, the 9th of July and the 29th of July 2021 allow to capture most of the evolution 

during the period of measurements. They are the clearer images and limit the amount of data to 

process. However, it increases the uncertainty of Chl-a estimates for datapoints in between 

these dates. An additional image from the 31st of August 2021 was downloaded to take a per-

fectly clear picture of the Nuup Kangerlua at the end of summer.  

 

The area of interest, the Nuup Kangerlua, is more than 200 kilometers long, leading to the need 

of downloading two images per date for S2A L1C scenes. However, only one S3A image was 

needed per date. The three S3A images were selected to be as close in time as possible from the 

S2A L1C scenes and were taken at the following dates: the 22nd of June, the 8th of July, and the 

28th of July 2021.  

 

 
3 Copernicus, https://dataspace.copernicus.eu/browser/?zoom=3&lat=26&lng=0&themeId=DEFAULT-
THEME&visualizationUrl=https%3A%2F%2Fsh.dataspace.copernicus.eu%2Fogc%2Fwms%2Fa91f72b5-f393-
4320-bc0f-990129bd9e63&datasetId=S2_L2A_CDAS  

https://dataspace.copernicus.eu/browser/?zoom=3&lat=26&lng=0&themeId=DEFAULT-THEME&visualizationUrl=https%3A%2F%2Fsh.dataspace.copernicus.eu%2Fogc%2Fwms%2Fa91f72b5-f393-4320-bc0f-990129bd9e63&datasetId=S2_L2A_CDAS
https://dataspace.copernicus.eu/browser/?zoom=3&lat=26&lng=0&themeId=DEFAULT-THEME&visualizationUrl=https%3A%2F%2Fsh.dataspace.copernicus.eu%2Fogc%2Fwms%2Fa91f72b5-f393-4320-bc0f-990129bd9e63&datasetId=S2_L2A_CDAS
https://dataspace.copernicus.eu/browser/?zoom=3&lat=26&lng=0&themeId=DEFAULT-THEME&visualizationUrl=https%3A%2F%2Fsh.dataspace.copernicus.eu%2Fogc%2Fwms%2Fa91f72b5-f393-4320-bc0f-990129bd9e63&datasetId=S2_L2A_CDAS
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2.2 Atmospheric corrections 
S3A scenes are already atmospherically corrected for use over water bodies and are thus not 

concerned by the process described here. S2A L1C scenes are produced for land use and need 

corrections to be used over water (Chen et al. 2017; Vanhellemont et Ruddick 2016). Several 

algorithms are available for this purpose, but in this study the ACOLITE4 algorithm was used 

as it shows good results in the processing of water imagery (Maciel et Pedocchi 2022). 

 

The ACOLITE algorithm uses the “dark spectrum fitting” approach which has been developed 

by Vanhellemont et Ruddick (2018). The ACOLITE GUI was used with the parameters 

rhow_443, rhow_492, rhow_560, chl_oc3 and chl_re_gons. The three first parameters allow to 

retrieve atmospherically corrected surface reflectance over water for the wavelengths 443, 492 

and 560 [ηm]. The chl_oc3 and the chl_re_gons allow to directly retrieve Chl-a estimates using 

the OC3 and the red-edge algorithms, which will be described below in Chapter 2.3. This par-

ametrisation reduces the processing time required.  

 

The outputs of the atmospheric corrections are single band raster layers that can be easily ma-

nipulated in ArcGIS pro to make Chl-a estimates.  

 

2.3 Chlorophyll-a algorithms 

2.3.1 OC3 for Sentinel-2A 
ACOLITE provides ready-to-use estimates of Chl-a using several algorithms. In this work, the 

classic OC3 (O’Reilly et al. 1998) and the red-edge (Gons 2004) algorithms have been selected. 

The OC3 is a three bands blue-green ratio algorithm and is similar as the OC3L and OC4Me 

algorithms described below in Chapter 2.3.2 and 2.3.4, offering a good comparison. On the 

other hand, the red-edge algorithm (described below in Chapter 2.3.3) is built over different 

bands and should thus offer more differences.  

 

The OC3 algorithm used by ACOLITE was first adapted by O’Reilly et Werdell (2019) for the 

Operational Land Imager (OLI) from Landsat-8 and then for the MSI from Sentinel-2 by Pah-

levan et al. (2020). It uses the bands of the following centered wavelengths: 442, 492 and 560 

[ηm]. 

 

It is expressed as (Pahlevan et al. 2020): 

 

𝑙𝑜𝑔10[Chl𝑎] = 𝑎0 + ∑ 𝑎𝑛 × [𝑙𝑜𝑔10(
𝑀𝑎𝑥  𝑅𝑟𝑠(442,492)

𝑅𝑟𝑠(560)
)]𝑛𝑛

1    (Eq. 1) 

 

Max Rrs (442,492) stands for the maximum value between these two bands. Chl-a is in [mg m-

3]. The constants an are described for each algorithm in Table 1. 

 

 

 

 
4 Natural Sciences.be, https://odnature.naturalsciences.be/remsem/software-and-data/acolite 

https://odnature.naturalsciences.be/remsem/software-and-data/acolite
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Table 1. Constants for the different algorithms. 

Algorithm a0 a1 a2/b1 a3 a4 

OC3 (Pahlevan et al. 

2020) 
0.3308 -2.6684 1.5990 0.5525 -1.4876 

OC3L (Cota 2004) - 0.592 -3.607 - - 

OC4Me (Morel et al. 

2007) 
0.4502748 -3.259491 3.522731 -3.359422 0.949586 

 

 

2.3.2 OC4L for Sentinel-2A: OC3L 
The OC4L algorithm is also a blue-green ratio algorithm. It is a linear algorithm, with constants 

tuned for arctic waters where high nutrients and low light availability typically lead to highly 

“packaged” pigments with lower specific absorption (Cota et al. 2003). It has been developed 

for SeaWIFs by Cota (2004) and uses the same four bands as the OC4Me algorithm described 

below (cf. Chapter 2.3.4), except for the last band. The four bands in question are of the fol-

lowing centered wavelengths: 443, 490, 510 and 555 (560 for the OC4Me) [ηm].  

 

In this study, the OC4L algorithm has been adapted to work with S2A, becoming an OC3L 

algorithm. Indeed, S2A does not provide a band of centered wavelength of 510 [ηm] as the 

bands are wider and the 510 [ηm] band is mostly contained within the 492 [ηm] band of S2A. 

The maximum absorption of Chl-a is around 442.5 [ηm] while the minimum is around 560 

[ηm]5, two wavelengths well covered by S2A. 

 

It is expressed as follows (adapted from Cota 2004): 

 

𝑙𝑜𝑔10[Chl𝑎] = 𝑎1 + 𝑏1 × [𝑙𝑜𝑔10(
𝑀𝑎𝑥 𝑅𝑟𝑠(442,492)

𝑅𝑟𝑠(560)
)]    (Eq. 2) 

 

Max Rrs (442,492) stands for the maximum value between these two bands. Chl-a is in [mg m-

3]. The constants an are described for each algorithm in Table 1. The original OC4L is the same 

with Max Rrs (443,490,510)/Rrs(555) instead of the current Max Rrs (442,492)/Rrs(560). This 

change could lead to less precise estimation of Chl-a for pixels where Rrs(510) is high, typically 

in Chl-a -rich waters, because the ratio Rrs(510)/Rrs(560) is mostly used for high Chl-a concen-

trations (O’Reilly et al. 2000). Nonetheless, it is a good object of comparison as it has two clear 

differences, with the OC4Me, using one less band, and with the OC3, being tuned for arctic 

waters.  

 

2.3.3 Red-edge for Sentinel-2A 

The third algorithm is the red-edge algorithm and has been developed by Gons (2002) for 

MERIS but can also be used with S2A L1C imagery (Vanhellemont et Ruddick 2016). It uses 

bands of centered wavelengths 664, 704 and 780 [ηm]. It should avoid the overestimation due 

to CDOM and NAP as these particles absorb in the blues. However, it has been developed for 

 
5 Sentinel online, https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/resolutions/radiometric  

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-olci/resolutions/radiometric
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high concentration of Chl-a (3 to 185 [mg m-3]) as the reflectance peak around 705 [ηm] is more 

visible in Chl-a -rich waters (Cota et al. 2003; Gons 2004).  

 

ACOLITE allows to produce ready-to-use Chl-a estimates using the red-edge algorithm devel-

oped by Gons (2002). It uses the following total backscattering coefficient (adapted for S2A 

from Gons (2004)): 

 

𝑏𝑏 =
1.61×𝑅𝑤(780)

0.082−0.6×𝑅𝑤(780)
        (Eq. 3)  

 

Where Rw stands for water leaving reflectance for a given wavelength. The backscattering co-

efficient can then be inserted into the following equation(adapted for S2A from Gons (2004)): 

 

[Chl𝑎] =

𝑅𝑤 (704)

𝑅𝑤 (664)
×(0.70+𝑏𝑏)−0.40−𝑏𝑏

1.06

0.015
      (Eq. 4) 

 

Where Rw stands for water leaving reflectance for a given wavelength. Chl-a is in [mg m-3]. 

The number 0.015 was used as the absorption coefficient of Chl-a (Royal Belgian Institute of 

Natural Sciences (RBINS) 2023). Outputs were only produced when surface reflectance at 664 

[ηm] were above 0.005 and when the ratio of surface reflectance 704/664 [ηm] was above 0.63 

(RBINS, 2023).  

 

2.3.4 OC4Me for Sentinel-3A 
S3A scenes directly provide Chl-a estimates using the OC4Me algorithm or the neural network 

algorithm. S3A scenes are used in this work in the purpose of comparison with S2A L1C scenes 

and the OC4Me is very close in calculations (cf. Eq 1, 2, and 5) from the OC3 and OC3L 

algorithms and was thus selected. This algorithm uses four bands and is a blue-green ratio al-

gorithm as the OC3 and the OC3L. It has the same basis as the algorithms developed by 

O’Reilly et al. (1998) and O’Reilly et al. (2000) but has been adapted by Morel et al. (2007) for 

MERIS which provides bands with similar wavelength as S3A.  

 

The OC4Me algorithm is expressed as (Morel et al. 2007): 

 

𝑙𝑜𝑔10[Chl𝑎] = 𝑎0 + ∑ 𝑎𝑛 × [𝑙𝑜𝑔10(
𝑀𝑎𝑥  𝑅𝑟𝑠(443,490,510)

𝑅𝑟𝑠(560)
)]𝑛𝑛

1   (Eq. 5) 

 

The original OC4Me uses Rrs(555) for greens (instead of Rrs(560) in Eq. 5) but S3A provides 

only Rrs(560) which is used in their official product under the name OC4Me. Max Rrs 

(443,490,510) stands for the maximum value between these three bands. Chl-a is in [mg m-3]. 

The constants an are described for each algorithm in Table 1. 

 

2.4 Datasets 
The results of the four algorithms described in Chapter 2.3 are four single bands raster layers 

of Chl-a estimates in [mg m-3], for each of the three dates selected in Chapter 2.1. A limit of 
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100 [mg m-3] was imposed as higher values are highly improbable in Nuup Kangerlua (Meire 

et al. 2015). The values of each raster were extracted using the coordinates of the samples from 

the GHGs dataset and added to it. The datapoints go from the 24th of June to the 5th of August 

2021. An additional variable was added using the closest Chl-a estimates in time from the time 

of sampling. Samples from the 24th of June to the 30th received the Chl-a estimates of the 22nd 

of June. Samples from the 1st of July to the 19th received the Chl-a estimates of the 9th of July. 

Finally, samples from the 20th of July until the 5th of August received the Chl-a estimates of the 

29th of July. 

 

The GHGs dataset originally contains 132 samples for 22 variables. The first six variables only 

give the name, number, date, time, and coordinates of the samples. Then the following five 

physical parameters are displayed: water temperature [°C], atmospheric pressure [mbar], wind 

speed [m s-1], air temperature [°C] and depth [m]. Then, eleven chemical parameters are pre-

sented: pH, salinity [PSU], dissolved oxygen [% of saturation], dissolved CH4 [% of saturation], 

dissolved CO2 [% of saturation], atmospheric concentration of CH4 [ppb], atmospheric concen-

tration of CO2 [ppm], dissolved concentration of CH4 [ppb], dissolved concentration of CO2  

[ppm], CH4 sea-air fluxes [μmol m-2 d-1] and CO2 sea-air fluxes [mmol m-2 d-1]. Appendix 1 

describes the acquisition of the data contained in this dataset.  

 

Several samples were removed as specified in Appendix 2 due to mistakes in the sampling such 

as contamination with respiration.  

 

A CTD (YSI EXO2 Multiparameter Sonde) produced an additional separate dataset. It did a 

measure every 10 minutes, from the 24th of June until the 6th of August and is composed of 

6302 points. It was then combined with the GPS points from the ship. Due to some missing 

coordinates and the movements of the ship, fewer points can be displayed on a map.  

 

Finally, the depth values were retrieved from the IBCAO database (Jakobsson et al. 2020). 
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3. Results 
3.1 Chlorophyll estimates 
To have an overview of the four different algorithms used and be able to compare them in 

Chapter 4, they will be presented below but only for the 22nd of June 2021. Additional scenes 

are in the Appendixes and will serve the discussion.  

Figure 2. Chl-a estimates in [mg m-3] from the OC3 algorithm (Pahlevan et al. 2020) using S2A L1C scenes from the 22nd 

of June 2021. 

In Figure 2, two inlets present higher Chl-a estimates near the glaciers in the east than in the 

middle of the fjord. Except for these two hotspots, the Chl-a concentrations in the fjord are low 

and well distributed. The highest Chl-a estimates are situated offshore of the Western coast of 

Greenland. 
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Figure 3. Chl-a estimates in [mg m-3] from the OC3L algorithm (derived from Cota 2004) using S2A L1C scenes from the 
22nd of June 2021. 

As for Figure 2, two inlets present higher Chl-a estimates near the glaciers in the east than in 

the rest of the fjord (Figure 3). Variations are well visible with the lowest estimates in the middle 

of the fjord and a marked hotspot in the Southern inlet of the Nuup Kangerlua. The highest Chl-

a estimates are situated offshore of the Western coast of Greenland.  
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Figure 4. Chl-a estimates in [mg m-3] from the red-edge algorithm (Gons 2004) using S2A L1C scenes from the 22nd of June 
2021. 

The red-edge algorithm does not present well distinguishable areas in Chl-a concentrations, 

except for the Southern inlet of Nuup Kangerlua which has lower estimates than in the rest of 

the fjord (Figure 4). Chl-a estimates are generally much higher than in Figure 1 and 2. A no-

ticeable number of pixels are missing data, in the Northern part of the fjord or offshore.  
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Figure 5. Chl-a estimates in [mg m-3] from the OC4Me algorithm (Morel et al. 2007) using S3A scenes from the 22nd of 
June 2021. 

The OC4Me algorithm gives low Chl-a estimates in the middle of the fjord, while a clear hotspot 

is visible offshore (Figure 5). A considerable portion of the fjord, near the shores or in the 

middle part of some inlets, are missing data. The part of inlets near glaciers in the Eastern part 

present higher Chl-a estimates than in the rest of the fjord.  

 
Table 2. Average and standard deviation of all pixels from the four different algorithms for the 22 nd of June 2021. 

 

Algorithm Mean Std. Dev. 

OC3 (Pahlevan et al. 

2020) 
1.33 1.15 

OC3L (derived from 

Cota 2004) 
2.11 2.81 

Red-edge (Gons 2004) 20.32 11.85 

OC4Me (Morel et al. 

2007) 
5.26 9.79 

 

The OC3 algorithm gives the lower Chl-a estimates on average. The distribution of the esti-

mates is not spread out as indicates the low standard deviation (Table 2). The OC3L algorithm 
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presents higher values on average, with a wider distribution. The two algorithms have mean 

values of the same scale. The red-edge algorithm in the other hand, has values on average ten 

times higher and has a high standard deviation. Finally, the OC4Me algorithm gives Chl-a es-

timates noticeably higher than the two other blue-green ratio algorithms and has a higher stand-

ard deviation (Table 2). The scale is the same for the 9th and the 29th of July 2021 (cf. Appen-

dixes 4 and 5). 

 

3.2 Water properties 

Figure 6. Salinity [PSU] from the CTD. Image from the 31st of August 2021. 

The further East the ship went, the deeper it was in the fjord. It appears that the closer the ship 

was to glaciers, the lower was the salinity (Figure 6). Baffin Bay waters are saltier but still 

below the world ocean’s average of 35 [PSU]. The salinity fluctuates in time as some area have 

high and low values. The ship made several travels inside the Nuup Kangerlua from Nuuk over 

a period of a month and a half.  
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Figure 7. Surface water temperature [°C] from the CTD. Image from the 31st of August 2021. 

The waters deep in the fjord present warmer temperatures than Baffin Bay waters (Figure 7). 

As for salinity, the temperature in one area can vary with time as some places present different 

values measured at different times.  
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Figure 8. Salinity [PSU] and surface water temperature [°C] from the CTD, with a measure every 10 minutes between the 

24th of June and the 6th of August 2021. 

Salinity appears stable along the ship’s route, with values generally above 30 [PSU]  (Figure 8). 

Water temperatures present more variations, with limited spikes. Two distinct areas present 

lower salinity while having higher temperatures, before sample number 2000 and 5000. It cor-

responds to the incursions deep in Nuup Kangerlua, with more meltwater inputs. This visible 

delimitation between two water types coupled with the very stable salinity except for the two 

low spots mentioned above, led to separation of the data into two categories of water. The Nuup 

Kangerlua water with salinity below 28 [PSU] and Baffin Bay water with salinity above this 

threshold.  The stability in salinity of Baffin Bay water is well repercussed in the low standard 

deviation presented in Table 3. This categorisation appears well suited as the standard devia-

tions of each category, both for salinity and temperature, are lower than the total ones.  

 
Table 3. Average and standard deviation of salinity [PSU] and surface water temperatures [°C] in regards of two different 
water types. 

Water Type 
Salinity [PSU] Water Temperature [°C] 

Mean Std. Dev. Mean Std. Dev. 

Nuup Kangerlua water 23.86 2.47 8.76 1.41 

Baffin Bay water 31.26 0.94 5.62 1.28 

Total 28.57 3.94 6.76 2.01 

 

The vertical spikes in salinity and temperature are probably due to local contamination. The 

CTD did not collect data between the 8th and the 12th of July due to a technical issue, leading to 

the visible hole between samples number 2000 and 3000 (Figure 8).  
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3.3 Greenhouse gases 

Figure 9. CO2 fluxes in [mmol m-2 d-1]. Image from the 31st of August 2021. Points have been dispersed to be more visible.  

The majority of Nuup Kangerlua acts as a CO2 sink (Figure 9). Only 13 samples out of the 132 

present a positive flux. The waters deep in the fjord appears to be an important sink of CO2 

while waters close to the fjord’s mouth are closer to equilibrium. The fluxes in Nuuk are more 

limited but are still generally negative.  

 

 

 



 

24 

 

 
Figure 10. CH4 fluxes in [μmol m-2 d-1]. Image from the 31st of August 2021. Points have been dispersed to be more visible. 

CH4 fluxes are almost all positive across the dataset, meaning that Nuup Kangerlua is a source 

of CH4 (Figure 10). The fluxes north of Nuuk and deep in the fjord are more limited than in 

Nuuk. The influence of the harbour is visible in the high fluxes observed in the capital of Green-

land. As highlighted in Table 4, Nuuk is a hotspot of CH4 emissions and with 39 samples out 

of the 132 in total, it has a weight in the total average. It also contributes to lower the sink of 

CO2. 

 
Table 4. Average and standard deviation of CO2 and CH4 fluxes with only Nuuk data, without it, or the total.  

 

CO2 sea-air fluxes 

[mmol m-2 d-1] 

CH4 sea-air fluxes 

[μmol m-2 d-1] 

Mean Std. Dev. Mean Std. Dev. 

Nuuk -9.52 18.39 31.02 29.6 

Without Nuuk -21.05 15.89 7.81 5.65 

Total -17.65 17.42 14.67 19.74 
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4. Discussion 
4.1 Comparison of the three algorithms used with S2A 
Looking at Figures 1, 2, and 3, one of the algorithms stands out as being inappropriate for Chl-

a estimates in Nuup Kangerlua. Indeed, the red-edge algorithm has been developed for produc-

tive waters with Chl-a concentrations between 3 and 185 [mg m-3] (Gons 2002). It is at high 

concentrations that the peak of reflectance occurs at 705 [ηm] (Cota et al. 2003; Gons 2004). 

However, in the transect made by Meire et al. (2015) in Nuup Kangerlua, their in situ Chl-a 

estimates range between 0 and 14 [mg m-3] in the first 40 meters of the water layer, with surface 

Chl-a being lower than the average.  Even if Table 2 considers all the pixels in Figures 1 to 3, 

the high average value for the red-edge algorithm is out of range.  

 

Figure 3 is very noisy, with high Chl-a estimates mixed with low estimates, reinforcing the 

unsuitability of this algorithm. In addition, the red-edge algorithm is not correlated in all three 

dates with the OC3L algorithm which is in range (cf. Table 2) with Meire et al. (2015) data (cf. 

Appendixes 6, 7, and 8).  

 

Both OC3 and OC3L algorithms are in range with Meire et al. (2015) in situ data (cf. Table 2 

and Appendixes 4 and 5). They are also well correlated (cf. Appendixes 9, 10, and 11), which 

is why only one of them was compared with the red-edge algorithm. This is not surprising as 

they rely on the exact same wavelengths, used in the same ratio (cf. Chapter 2.3).  

Figure 11. Difference OC3L – OC3 in [mg m-3] for the 22nd of June 2021. Positive values are when OC3L > OC3. 
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The OC3L presents no real changes (white pixels) or higher estimates than the OC3 algorithm, 

for almost all pixels in the fjord (Figure 11). The scale is still similar (cf. Table 2 and Appen-

dixes 4 and 5), and the higher estimates trend stands true for all three dates. It is coherent with 

the aim of this algorithm as the OC4L algorithm (which is the basis of the derived OC3L) is 

increasing the Chl-a estimates for values over 0.6 [mg m-3] and reducing the estimates below 

this threshold in comparison with the OC4V4 algorithm (Cota 2004; O’Reilly et al. 2000). The 

OC3L does the same in comparison with the OC3 as this algorithm is not tuned for arctic waters 

just like the OC4V4. The signal is not clear in the Northern inlet, probably due to the presence 

of sea-ice and icebergs. Most of the pixels inside Nuup Kangerlua present no changes between 

the two algorithms for all three dates (cf. Figure 11 and Appendixes 12 and 13).  

 

Even though the OC3L is only derived from another algorithm without calibration, it still pre-

sents coherent estimates in regard to the OC3 algorithm. It gives slightly higher estimates, 

which is expected, and these appear more in line with the in situ data of Meire et al. (2015) and 

the OC4Me estimates. It was thus selected to be tested with the GHGs fluxes and dissolved 

concentrations.  

 

4.2 Comparison with OC4Me from S3A 
The OC4Me algorithm provides higher estimates on average for each of the three dates (cf. 

Table 2 and Appendixes 4 and 5). Looking at Figures 2, 3, and 5, this algorithm appears to give 

estimates in line with the OC3 and OC3L algorithms for the 22nd of June 2021. It reinforces the 

overall validity of the estimates made with S2A, as another instrument (OLCI on S3A) and 

another algorithm (similar but using 4 bands instead of 3) get to the overall same conclusions.  

 

S3A Ocean products have already been processed for atmospheric corrections6 and show good 

results (Binh et al. 2022; Zhou et al. 2023) even though it might underestimate Chl-a for very 

low values (>0.1 [mg m-3]) (Tilstone et al. 2021). In addition, the volume of data is lower, 

facilitating their use and processing time. Even though the exact revisit time of S3A is longer 

than S2A, the much wider scenes allow to have images of the same place more frequently which 

is important to follow closely the evolution of Chl-a concentrations and to not miss blooms. 

 

However, S3A scenes have a lower spatial resolution in comparison with S2A. The 300x300 

m2 pixels are enough to treat open sea or very large water bodies but the complexity of the 

ramifications of a fjord is too high for this precision. In Figure 4, a lot of pixels are missing data 

in the fjord, sometimes cutting the inlets in half. The pixels near the shores are also probably 

influenced by the reflectance of land. By extracting the values under the 132 samples points 

from the GHGs dataset, only 51 have a OC4Me value. The OC4Me algorithm is thus not well 

suited for the Nuup Kangerlua and this study. Still, it is interesting to reinforce the validity of 

the S2A estimates and to compare them in more depth.  

 

 

 

 
6 Sentinel online, https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/ocean-processing  

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/ocean-processing
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Figure 12. Difference OC3L – OC4Me in [mg m-3] for the 22nd of June 2021. Positive values are when OC3L > OC4Me. 
Max value for OC3L pixels. 

The OC3L and OC4Me algorithms are not as close as the OC3L and the OC3, but they still give 

similar estimates as most of the pixels vary of 3 [mg m -3] or less (Figure 12). Due to the differ-

ence in spatial resolution, the maximum value of the OC3L algorithm was chosen to be com-

pared with the corresponding value of the bigger pixel from OC4Me. The region with the lesser 

variations is inside Nuup Kangerlua whereas the open sea in the West presents high positive 

and negative variations adjacent to one another. The OC3L has more pixels higher than the 

OC4Me, but the average value is lower, meaning that the hotspot identified offshore is very 

high with OC4Me estimates. Appendixes 14 and 15 shows that the OC4Me and OC3L estimates 

are close for all three dates, even if, for the 8-9th of July and the 28-29th of July, the OC4Me 

generally gives higher results. 

 

The Southern inlet (in blue in Figure 12 and for some parts in Appendixes 14 and 15) appears 

to be a consistent place where the OC3L algorithm gives higher estimates than the OC4Me, 

especially at its source, near the glacier. This could indicate that the OC3L is more subject to 

overestimation in the presence of CDOM than the OC4Me and be caused by the missing band 

510 [ηm]. 



 

28 

 

 

4.3 Chlorophyll-a estimates and greenhouse gases fluxes 
The OC3, OC3L and OC4Me estimates all indicate that surface waters inside the Nuup Kanger-

lua are not highly productive waters and present low Chl-a estimates. It is coherent with the 

results of Meire et al. (2015), even if they found a subsurface Chl-a spring bloom, because the 

period covered in this work does not include spring. Although the remote sensing Chl-a esti-

mates present uncertainties (Pahlevan et al. 2021) due to atmospheric corrections and algo-

rithms and that these uncertainties are enhanced by the lack of calibration with in situ data in 

this study, it is still relevant to test if there is a visible link between the OC3L estimates and 

GHGs fluxes. To find a relationship between Chl-a and GHGs fluxes would reinforce the va-

lidity of the estimates as there should be a link. Indeed, higher Chl-a, meaning higher NPP, 

leads to a diminution of dissolved CO2 concentrations through photosynthesis, a phenomenon 

visible in Nuup Kangerlua mostly during spring, according to Meire et al. (2015). Higher Chl-

a also leads to higher dissolved CH4 concentrations through the decomposition of organic mat-

ter by methanogenic Archaea in anaerobic environments (Saunois et al. 2020). 

Figure 13. Matrix of correlation between dissolved CH4 and CO2 and their sea-air fluxes, with the OC3L (Chl_oc3Arc_FI-
NAL) estimates at sampling points. Cw stands for “dissolved concentrations”.  

Figure 13 shows a correlation between Chl-a estimates and CH4, particularly with dissolved 

concentrations as fluxes are influenced by additional external factors, such as wind speed 

(McGinnis et al. 2015). As for CO2, no signal appears indicating that other factors influenced 

dissolved CO2 and fluxes during the period of measurements. These results are confirmed by 

Appendix 16. The lack of correlation between CO2 and Chl-a is not a problem as Rysgaard et 

al. (2012) also found no correlation between annual NPP and CO2 uptake in Nuup Kangerlua, 

underlining the fact that CO2 fluxes are controlled by other factors. 
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Figure 14. OC3L estimates at sampling points (pink), dissolved CH4 concentrations (green) and depth (black). The red hori-
zontal line indicates a depth of 100 [m] and is the reference for the depth line in black.  

Figure 14 further emphasizes the link between Chl-a estimates and dissolved CH4 concentra-

tions, with most of the spikes in Chl-a happening simultaneously as spikes in CH4 concentra-

tions. Some Chl-a hotspots do not seem to influence CH4, for example in the first samples or 

around sample 60. These uncorrelated spikes of Chl-a happened over deep waters, suggesting 

that depth is a factor influencing both CH4 and the link between CH4 and Chl-a. Indeed, it is a 

recognized factor impacting dissolved CH4 and fluxes. Sediments are producing CH4 because 

they contain anoxic environments (Arctic Monitoring and Assessment Programme (AMAP) 

2015; Saunois et al. 2020). They will have an impact on surface waters when depth is shallow, 

with a threshold of 100 [m] (McGinnis et al. 2006). Shallower waters present higher CH4 fluxes 

than deep waters (Weber et al. 2019). It is also what Table 5 indicates. The bias of Nuuk iden-

tified in Chapter 3.3 has an influence on this result as Nuuk is a harbour and thus present shallow 

waters, high CH4 fluxes and high Chl-a concentrations potentially due to human activities. It 

drives the mean of shallow waters up, and combined with the high standard deviation of this 

category, it means that shallow waters do not necessarily lead to high dissolved CH4 concen-

trations and completely limit the conclusions that can be drown from Figure 14 and 15.  

 
Table 5. Average and standard deviation of CO2 and CH4 fluxes with two depth categories . 

Depth 

Dissolved CH4 con-

centrations [ppb] 

CH4 sea-air fluxes 

[μmol m-2 d-1] 

Mean Std. Dev. Mean Std. Dev. 

<100 [m] 5189 2611 20.6 24.33 

Deep 2810 665 6.85 4.45 

Total 4162 2332 14.67 19.74 
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Figure 15. Scatter plot of OC3L estimates and dissolved CH4. The red line is the linear regression line for points with a 
depth shallower than 100 [m]. The blue line is the linear regression line for points with a depth superior as 100 [m]. 

Figure 15 underlines the interaction between Chl-a and depth to explain dissolved CH4 concen-

trations. Depth or Chl-a alone explain less dissolved CH4 than when these two factors interact. 

It explains why some spikes of Chl-a or some shallow waters are not necessarily linked with 

high dissolved CH4 concentrations. However, due to the presence of Nuuk’s samples, which 

can be considered as an intermediate variable in this relationship, it would be bold to affirm that 

Chl-a and depth are drivers of the CH4 fluxes. 
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4.4 The Nuup Kangerlua’s hydrology and greenhouse gases fluxes 
Due to meltwater inputs and a complex topography, fjords have a specific hydrology which has 

an impact on GHGs fluxes. Figure 8 and Table 3 allowed to identify two main water types, the 

water from the fjord with meltwater origins and the water from Baffin Bay entering the fjord 

from offshore.  

Figure 16. Matrix of correlation between dissolved CH4 and CO2 and their sea-air fluxes, with water temperature [°C], sa-
linity [PSU] and depth [m]. Cw stands for “dissolved concentrations”.  

Figure 16 underlines the very strong relationship between salinity and temperature, creating 

two distinct water types. These are also correlated with GHGs, particularly dissolved CO2 con-

centrations.  
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Figure 17. Salinity [PSU] (blue), water temperature [°C] (red) and percentage of saturation of dissolved CO2 (orange).  

Percentage of saturation is a good variable to observe at the same time the dissolved concentra-

tions and the localisation of positive fluxes, when saturation exceeds 100 [%]. In Figure 17, it 

is visible that CO2 saturation decreases when salinity decreases, meaning that the Nuup Kanger-

lua waters are a strong sink of CO2. This is due to meltwater inputs, which present a low CO2 

saturation. This result is in line with the study of Meire et al. (2015) who identified glacial 

meltwater as a driver of negative CO2 flux. Appendix 17 emphasizes the strong difference be-

tween the two water types identified with Figure 8 and Table 3 regarding CO2. 

 
Table 6. Overview of CO2 sea-air fluxes around Greenland. 

Studies 
CO2 sea-air fluxes 

[mmol m-2 d-1] 
Regions 

This study -17.65 (±17.42) Nuup Kangerlua 

(Meire et al. 2015) -14.84 Nuup Kangerlua 

(Rysgaard et al. 2012) -18.95 to -24.66 Gothabsfjord entrance  

(Meire et al. 2015) -12.5 to -50 
Fyllas Banke Shelf (offshore of 

Nuup Kangerlua) 

(Chen et al. 2013 in Meire et al. 

(2015)) 
-3.33 

Fyllas Banke Shelf (offshore of 

Nuup Kangerlua 

(Sejr et al. 2011) -7.31 Young Sound (Eastern Greenland) 

(Nakaoka et al. 2006) -11.87 
Greenland Sea (Eastern Green-

land) 

 

The CO2 fluxes found in this study are in line with the rest of the literature (Table 6). The results 

from the Fyllas Banke shelf do not contradict the lower uptake from Baffin Bay waters in com-

parison with Nuup Kangerlua waters from this work. The value from Rysgaard et al. (2012) 

come from a multi annual dataset and is a yearly mean converted into a daily mean. These 

authors found an even greater sink of CO2 during some months and emissions of CO2 during 
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three periods out of their 6 years of measurements. They emphasize the high inter annual vari-

ability, limiting the use of short term, one and a half month-long, study.   

 
Table 7. Average and standard deviation of CH4 dissolved concentrations and fluxes with the two water types identified with 
Figure 7 and Table 3. 

Water Type 

Dissolved CH4 concentra-

tions [ppb] 

CH4 sea-air fluxes 

[μmol m-2 d-1] 

Mean Std. Dev. Mean Std. Dev. 

Nuup Kangerlua 

water 
3040 1106 11.64 23.58 

Baffin Bay water 4802 2598 16.4 17.08 

Total 4162 2332 14.67 19.74 

 

For CH4, a strong relationship with water types such as for CO2 is not visible. Still, Nuup 

Kangerlua waters appear to be less saturated in CH4 than Baffin Bay waters. The higher average 

fluxes in Baffin Bay water are driven by the presence of Nuuk which was filled with this type 

of water during the majority of the measurement period. It does not mean that fjords are low 

emitters of CH4. Indeed, Bonaglia et al. (2022) identified fjords as strong emitters of CH4. In 

comparison with the rest of the literature, the results of this study are in the lower end for CH4 

fluxes in arctic fjords (cf. Appendix 18). The meltwater inputs create a very stratified water 

column and sills at the entrance of fjords reduce even more the mixing of deep water laying at 

the bottom of fjords (Straneo et Cenedese 2015). It results in deep waters depleted of oxygen. 

The high CH4 source is thus located at seabed and is emitted in the atmosphere during mixing 

event (Bonaglia et al. 2022), not necessarily captured in this study.  
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5. Limitations 
There are several limitations to this work, both regarding Chl-a estimates and the GHGs dataset. 

As mentioned before, remote sensing of Chl-a is challenging, especially in the Arctic (cf. Chap-

ter 1.1.1). All the steps leading to Chl-a estimates, from the capture of surface reflectance by 

satellites to atmospheric corrections and Chl-a algorithms, are subject to uncertainties. In the 

absence of calibration with in situ data, all the strict numbers of Chl-a advanced in [mg m-3] are 

not to be taken as exact values but only aim at providing the tendencies visible from space.  

 

The GHGs dataset suffers from covering a too short period of time in order to understand all 

the processes influencing GHGs fluxes over a year. In addition, most of the samples do not 

come from the same sampling sites, except for Nuuk, which removes the possibility of creating 

a proper time series. On the other hand, the important number of samples coming from Nuuk is 

a bias in the results as it is a harbour influenced by human activities.  

 

With the ongoing global warming, processes are evolving and complexifying the comparison 

with previous studies.  

 

Finally, the GHGs dataset has been partially collected manually on a sailing ship, implying field 

hazards, mistakes, or contamination. All samples were studied to find those with potential mis-

takes which were removed. This process is described in Appendix 3. It is possible that mistakes 

were overseen or that some samples were wrongfully removed.   
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6. Conclusion 
Both the OC3 and OC3L algorithms used with S2A scenes give results coherent with the liter-

ature and with a spatial resolution sufficiently high to retrieve Chl-a estimates in Nuup Kanger-

lua. In order to improve the precision of estimates, a calibration with in situ data would be 

welcome. The OC4Me algorithm used with S3A scenes is great to have quick and ready-to-use 

estimates of Chl-a and can provide more continuous data as images are produced more fre-

quently for the same places but the spatial resolution is still too low to cover a complex area 

such as the Nuup Kangerlua.  

 

As for GHGs, the Nuup Kangerlua is an important sink of CO2 with an average of -17.65 

(±17.42) [mmol m-2 d-1]. It corresponds to an annual uptake of approximatively -77 [g C m-2 y-

1]. It is an emitter of CH4 with an average of 14.67 (±19.47) [μmol m-2 d-1] during the period of 

measurements. It corresponds to annual emissions of approximatively 0.06 [g C m -2 y-1]. Glacial 

meltwater inputs are a driver of the strong CO2 uptake while no main driver of the CH4 fluxes 

was identified.  

 

To be able to understand the precise GHGs fluxes in Nuup Kangerlua over a year and thus 

reduce the uncertainties surrounding this key step of the carbon cycle, a study based on periodic 

measurements at fixed places in the fjord during the year, with data including Chl-a for the 

calibration of algorithms, would be necessary. It would be well suited to compare and update 

the work from Rysgaard et al. (2012) and Meire et al. (2015). Such a robust dataset could be 

used to model the GHGs fluxes, in particular CH4, with a high spatial resolution thus lowering 

the uncertainties surrounding the CH4 cycle in fjords. 
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Appendixes  
 
Appendix 1. Description of the sampling and post-processing leading to the acquisition of the GHGs dataset.  

Sampling: 

The data collected is aimed at obtaining the concentrations of CO2 and CH4 in the air, as well 

as in the arctic water, to estimate the sea-air fluxes.   

Both atmospheric and oceanographic samples were taken manually on starboard side of a boat 

to quantify CO2 and CH4 concentrations. A minimum of 2 samples per day were established, 

however this depended on local weather and sailing conditions. A CTD (YSI EXO2 Multipa-

rameter Sonde) was installed through the hull of the ship, just below the surface so it always 

remained in the water. This instrument collected surface water temperature [°C], salinity [PSU], 

depth of the sonde [m], atmospheric pressure [mbar] and dissolved oxygen [% sat], with a 10-

minute interval.  

The manual measurements of the atmospheric concentration were performed with a 30 [ml] 

syringe. Air was taken at a height above the body, in order not to contaminate the air sample 

with breath. It was then directly introduced into a 10 [ml] exetainer.  

For surface water, the headspace method was used which equilibrates the gas molecules in the 

aqueous phase and those in the gaseous phase. A hose system was installed next to the CTD 

borehole to take water samples. In this way, the samples of water collected corresponded to the 

CTD measurements. Two samples of water were performed per point of sampling. Using a 140 

[ml] syringe, water was taken through the hose. Then, the air bubbles were removed, along with 

35 [ml] of water to create the headspace, that was then filled with atmospheric air. To equilibrate 

the molecules, the syringe were shaken for 2 minutes (Magen et al. 2014). The air on the top 

was then transferred to a 30 [ml] dry syringe and then introduced into a 10 [ml] exetainer.  

 

Post-processing: 

All the exetainers resulting from the sampling were taken to the Aquatic Physic laboratory at 

the University of Geneva to be treated with the Picarro Gas Concentration and Isotope Analyzer 

(Picarro G2201-i, Picarro, CA, USA). This instrument allows high precision in CO2 and CH4 

concentration measurements. To automate the process, a SAM auto-sampler was used.7 

Appendix 2 describes all the procedures and equations that were used to calculate the flux of 

CO2 and CH4 from the ocean to the atmosphere at the air-water interface.   

 

 

 
  

 
7 Openautosampler, https://www.openautosampler.com/  

https://www.openautosampler.com/
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Appendix 2. Description of the sampling and post-processing leading to the acquisition of the GHGs dataset.  

To calculate Equation 

Gas concentra-

tion in the head-

space 

  

Ideal Gas Law 

(Magen et al. 

2014)  

𝑛  =  
𝑃𝑖  ∗  𝑉

𝑅  ∗  𝑇
 

 

 

n, number of moles, 

Pi, partial pressure 

[Pa], 

V, volume [m3], 

R, the ideal gas con-

stant [J K-1mol-1] 

T, temperature [K]. 

Dissolved water 

concentration 

Henry’s Law 

(Sander 2023) 
𝐶𝑒𝑞  =  𝐻𝑖  ∗ 𝑃𝑖 

Ceq, solubility of the 

gas [mmol m-3], 

Hi, Henry’s coeffi-

cient, 

Pi, the partial pres-

sure [Pa]. 

Gas transfer ve-

locity - K600 

Gas transfer ve-

locity 

 (MacIntyre et al. 

2010) 

K600 = 2.04 ∗ u10 + 2.0 u, wind speed 

Schmit number - 

Sc 

Schmit number 

(Wanninkhof 

2014) 

𝑆𝑐𝐶𝐻4 = 2039.2 − 120.31𝑡 + 

3.4209 t2 − 0.040437𝑡3 

𝑆𝑐𝐶𝑂2 = 2073.1 – 125.62𝑡 + 

3.6276𝑡2 − 0.043219𝑡3 

 

t, water temperature 

Exchange coef-

ficient - Ki 

Gas exchange 

(McGinnis et al. 

2015) 

𝐾𝑖 = 𝐾600 ∗ (600/𝑆𝑐)−𝑛 

K600 [m s-1] is the 

gas transfer velocity. 

Sc, Schmit number 

For the wind, n:  

n = 0.5 for wind 

speeds > 3.7 [m s-1] 

or, n = 0.66 for wind 

speeds < 3.7 [m s-1] 

Flux from the 

ocean to the at-

mosphere at the 

sea-air interface 

Fick’s first law 

(Fick 1855) 
𝐹𝑔𝑎𝑠  =  𝐾𝑖  ∗  (𝐶𝑤 − 𝐶𝑒𝑞) 

Fgas, flux of gas 

[mmol m−2 d−1] for 

the CO2 and in [µmol 

m−2 d−1] for the CH4. 

Ki, exchange coeffi-

cient [m d−1]. 

Cw, concentration of 

dissolved gas in wa-

ter, 

Ceq, concentration at 

equilibrium [mmol 

m-3]. 
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Appendix 3. Table of data removed during the post-processing of the data. 

Samples name Problem Modification 

MAU210707 B Atmospheric CO2 [ppm] too high Removed 

MAU210707 E Wrong coordinates Removed 

MAU210707 F Wrong coordinates Removed 

MAU210707 H Atmospheric CH4 [ppm] very low Removed 

MAU210712 A Atmospheric CH4 [ppm] very low Removed 

MAU210712 B Atmospheric CH4 [ppm] very low Removed 

MAU210725 C 

Atmospheric CH4 [ppm] too high, 

with negative dissolved CH4 con-

centrations 

Removed 

MAU210725 D 

Atmospheric CH4 [ppm] too high, 

with negative dissolved CH4 con-

centrations 

Removed 

MAU210725 K Wrong coordinates Removed 

MAU210725 L Wrong coordinates Removed 

MAU210726 D 
Contamination from a nearby 

CO2 source 
Removed 

MAU210726 E 
Contamination from a nearby 

CO2 source 
Removed 

MAU210726 J 
Contamination from a nearby 

CO2 source 
Removed 

MAU210726 G 

Atmospheric CH4 [ppm] too high, 

with negative dissolved CH4 con-

centrations 

Removed 

MAU210726 H 

Atmospheric CH4 [ppm] too high, 

with negative dissolved CH4 con-

centrations 

Removed 

MAU210726 I 

Atmospheric CH4 [ppm] too high, 

with negative dissolved CH4 con-

centrations 

Removed 

MAU220806 A Atmospheric CO2 [ppm] too high Removed 

MAU220806 B Wrong coordinates Removed 
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Appendix 4. Average and standard deviation of all pixels from the four different algorithms for the 9th of July 2021 (8th 

of July for the OC4Me). 

 

Algorithm Mean Std. Dev. 

OC3 (Pahlevan et al. 

2020) 
1 0.95 

OC3L (derived from 

Cota 2004) 
1.41 2.12 

Red-edge (Gons 2004) 17.79 13.24 

OC4Me (Morel et al. 

2007) 
5.03 10.25 

 

Appendix 5. Average and standard deviation of all pixels from the four different algorithms for the 29th of July 2021 (28th 

of July for the OC4Me). 

 

Algorithm Mean Std. Dev. 

OC3 (Pahlevan et al. 

2020) 
1.19 1.59 

OC3L (derived from 

Cota 2004) 
1.84 3.18 

Red-edge (Gons 2004) 15.7 12.15 

OC4Me (Morel et al. 

2007) 
4.48 10.88 

 

 

 

Appendix 6. Scatterplot of red-edge and OC3L Chl-a estimates in [mg m-3] for the 22nd of June 2021. 
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Appendix 7. Scatterplot of red-edge and OC3L Chl-a estimates in [mg m-3] for the 9th of July 2021. 

 

 
 

Appendix 8. Scatterplot of red-edge and OC3L Chl-a estimates in [mg m-3] for the 29th of July 2021.

 
Appendix 9. Scatterplot of OC3 and OC3L Chl-a estimates in [mg m-3] for the 22nd of June 2021. 
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Appendix 10. Scatterplot of OC3 and OC3L Chl-a estimates in [mg m-3] for the 9th of July 2021. 

 

 
 

Appendix 11. Scatterplot of OC3 and OC3L Chl-a estimates in [mg m-3] for the 29th of July 2021.

. 

 

Appendix 12. Difference OC3L – OC3 in [mg m-3] for the 9th of July 2021. Positive values are when OC3L > OC3. 
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Appendix 13. Difference OC3L – OC3 in [mg m-3] for the 29th of July 2021. Positive values are when OC3L > OC3. 

 

Appendix 14. Difference OC3L – OC4Me in [mg m-3] for the 8-9th of July 2021. Positive values are when OC3L > 

OC4Me. 



 

49 

 

Appendix 15. Difference OC3L – OC4Me in [mg m-3] for the 28-29th of July 2021. Positive values are when OC3L > 

OC4Me. 

 

Appendix 16. Average and standard deviation of CO2 and CH4 fluxes in regard of two categories, above 2 [mg m-3] of 

Chl-a (“High Chl-a”) or below (“Low Chl-a”). 

 

 

CO2 sea-air fluxes 

[mmol m-2 d-1] 

CH4 sea-air fluxes 

[μmol m-2 d-1] 

Mean Std. Dev. Mean Std. Dev. 

High Chl-a -16.29 20.34 30.14 34.98 

Low Chl-a -18.5 16.73 9.35 7.34 

Total -17.65 17.42 14.67 19.74 

 

 

Appendix 17. Average and standard deviation of CO2 dissolved concentrations and fluxes for the two water types iden-

tified with Figure 7. 

Water Type 

Dissolved CO2 con-

centrations [ppm] 

CO2 sea-air fluxes 

[mmol m-2 d-1] 

Mean Std. Dev. Mean Std. Dev. 

Nuup Kangerlua 

water 
273.48 88.73 -28.88 18.97 

Baffin Bay water 383.72 69.48 -11.23 12.66 

Total 343.64 93.36 -17.65 17.42 
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Appendix 18. From (Bonaglia et al. 2022). Surface methane concentrations and methane emissions to the atmosphere 

across 10 fjords worldwide. The average flux is the average of all average emissions ± standard error. 

 


