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Résumé 

 

Cette étude teste l'automatisation de la détection des revêtements à partir d'images satellites 

Pléiades Neo de juin 2025. L'objectif principal vise à compléter les types de revêtements classés 

comme "dur - autre dur" dans la future carte de couverture du sol. L'objectif secondaire propose 

des pistes d'automatisation et d'évolution technique pour la collecte des données.  

Une première approche de classification non supervisée ISO Cluster dans ArcGIS Pro a 

segmenté les images en cinq classes après filtrage des objets dépassant 40 cm de hauteur via 

le modèle numérique de hauteur. Une deuxième approche de classification supervisée Random 

Forest dans R a utilisé sept classes de revêtements sur 19 871 pixels d'entraînement. Le résultat 

a ensuite été appliqué aux polygones de la couveture du sol selon leur classe majoritaire à 80% 

minimum. L'enrichissement final a intégré les données collaboratives OpenStreetMap par 

intersection spatiale. 

La classification non supervisée permet une segmentation rapide mais reste limitée par les 

ombres et les matériaux à signatures spectrales proches. La classification supervisée Random 

Forest atteint 98,36% de précision globale à l'échelle pixel avec une erreur de 1,64%. Le passage 

à l'échelle objet ne permet de classifier que 31,2% des polygones principalement des surfaces 

arborées homogènes. Les 68,8% de polygones non classifiés correspondent aux zones urbaines 

composites où coexistent plusieurs matériaux. L'intégration d'OpenStreetMap complète les 

données manquantes dans les zones bien documentées. 

L'automatisation partielle serait réalisable pour les surfaces homogènes de grande taille. Une 

stratégie hybride combinant classification automatisée, enrichissement semi-automatique via 

OpenStreetMap et validation ciblée semblerait optimale. Les limites principales concernent 

l'occlusion par les bâtiments et la végétation, la sensibilité aux conditions d'acquisition et 

l'hétérogénéité du tissu urbain. Les perspectives incluent l'intégration de données LiDAR, 

l'imagerie oblique, les séries temporelles et les modèles d'apprentissage profond comme 

AlphaEarth Foundations qui réduisent les besoins en données d'entraînement et fonctionnent 

avec des sources multiples. 
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1 Introduction 

1.1 Présentation de la structure d’accueil  

Le stage, d'une durée de 4 mois à 60%, s'est déroulé au sein de la Direction de l’Information du 

Territoire (DIT) rattachée au Département du Territoire (DT). Le Département du Territoire de 

l’État de Genève pilote le développement territorial du canton. Elle est l’entité référente et 

constitue le centre de compétences du Système d’Information Territorial Genevois (SITG). Elle 

veille, notamment, à la diffusion, à la promotion et à la valorisation des données territoriales, à la 

gestion et à la diffusion du catalogue des géométadonnées, à la garantie de la cohérence et de 

la qualité des géodonnées de référence, à la collaboration avec l’ensemble des partenaires 

institutionnels sur des projets liés à la gestion du territoire ainsi qu’à la gestion des interactions 

avec les utilisateurs. La DIT assure également la gestion du référentiel des données, la direction, 

la surveillance et la vérification de la mensuration officielle et du cadastre du sous-sol. (Direction 

de l’information du territoire (DIT)) 

Le Système d’Information du Territoire à Genève est fondé sur un réseau de partenaires publics 

avec pour objectif de coordonner, centraliser et diffuser largement les données relatives au 

territoire genevois ainsi que les outils de gestion, de consultation et de restitution. La DIT 

comprend plusieurs services. Les services généraux assurent le support, l’information au public 

et aux professionnels, la formation et la gestion des archives. Le service expertise et prestations 

gère le catalogue de métadonnées, configure les plateformes, diffuse les données géographiques 

et BIM, conseille en géomatique et exploite les données pour produire des indicateurs ou des 

outils d’aide à la décision. Le service production et gestion des données veille à la qualité des  

données de référence à leur modélisation et à leur mise à jour, tout en assurant l’acquisition, le 

traitement et le contrôle. Enfin, le service recherche et développement se concentre sur la 

conception de projets innovants et le test de nouvelles technologies. 

 

Figure 1 : organigramme du Département du Territoire 
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1.2 Contexte et enjeux  

Dans un contexte de gestion durable de la ressource sol, il semble nécessaire de cartographier 

finement la nature des sols, de mesurer et documenter leurs propriétés, d’étudier leur évolution 

dans le temps, de mesurer l’impact des activités humaines sur cette évolution, d’estimer les 

conséquences des modifications de ses propriétés sur l’environnement et d’anticiper l'impact 

d'événements météorologiques. (Cercle Couverture du Sol, 2024). L’exploitation des données de 

couverture du sol pour une gestion durable répond, en effet, à une série de besoins exprimés par 

différents services publics dans le cadre du Cercle de la Couverture du Sol du Département du 

Territoire. Je dois chercher plus d'informations spécifiques sur les cercles d'utilisateurs du SITG 

de Genève. Un cercle est un espace d'échange organisé pour traiter une thématique précise. Les 

cercles permettent aux participants d'échanger, de partager des informations ou d'expérimenter 

sur un sujet défini. Chaque cercle possède un responsable. Ce responsable décide de l'ouverture 

au public, invite des personnes intéressées et organise les modalités de fonctionnement.  Le 

cercle des contributeurs et usagers est un organe de la communauté de la géoinformation. La 

communauté regroupe toutes les parties prenantes de la géoinformation de la région genevoise 

: l'administration cantonale, les gestionnaires et producteurs de géodonnées et les usagers. Les 

cercles permettent de rassembler les acteurs au niveau opérationnel et technique. Ils servent à 

suivre les usages, échanger sur les besoins et proposer des évolutions. Enfin, toute personne 

peut demander à rejoindre un cercle existant ou proposer la création d'un nouveau cercle. 

Notamment, l’Office Cantonal de la Nature et de l’Agriculture (OCAN) a souligné la nécessité 

d’améliorer l’efficacité des mises à jour des changements liés aux zones artificialisées afin de 

pouvoir concentrer davantage les efforts sur l’observation et la gestion des milieux naturels. Dans 

le même esprit, ce service a eu besoin de données permettant le suivi de la loi climat urbain L1.07, 

en particulier pour le monitoring de la végétalisation, de l’arborisation et de la mobilité douce. 

Plusieurs services ont insisté sur l’importance de disposer d’une carte précise et détaillée des 

sols, notamment autour du domaine public comme les routes cantonales. L’Office Cantonal de 

l'eau (OCEau) et le SIPV ont exprimé le besoin d'une cartographie qui intègrent des informations 

sur l’imperméabilisation. De même, l'Office Cantonal des transports s'intéresse à l’utilisation des 

sols et les types de revêtements. Le Conservatoire du Jardin Botanique (CJB) a quant à lui 

exprimé le besoin de créer une carte unique et fédératrice, structurée autour d’indices 

harmonisés (imperméabilité, fragmentation, naturalité) qui puisse servir de base commune. À 

partir de cette carte de référence, des cartes dérivées pourront alors être produites ou adaptées 

aux différents besoins des services. Le CJB a également mis en avant la nécessité de disposer 

d’un modèle de données unique, évolutif et collaboratif, afin de répondre de manière cohérente 

et durable aux attentes de l’ensemble des acteurs. L’OBSTER a souhaité utiliser ces données 

pour surveiller l’artificialisation des sols et évaluer les impacts des projets d’aménagement sur le 

territoire. De son côté, le Département du Territoire (DT) a mis en avant le besoin d’analyses 

quinquennales ou décennales des évolutions des sols, afin de suivre les effets des projets 

d’infrastructure dans le cadre de la Vision Territoriale Transfrontalière 2050. Le DT a également 

souligné l’importance de mettre en place une base de données commune à l’échelle du Grand 

Genève qui puisse permettre un suivi homogène de l’imperméabilisation et de l’artificialisation des 

sols dans une perspective transfrontalière. L’OCEau a quant à lui insisté sur le renforcement de 

la qualité des informations, en vue d’une meilleure préservation des sols. Il s’agirait notamment 
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d’améliorer la connaissance des phénomènes d’infiltration et de ruissellement ainsi que 

l’identification des zones inconstructibles proches des cours d’eau et des secteurs sensibles.  

Enfin, en tant qu’entité responsable des données de la mensuration officielle, la DIT a pour mission 

de coordonner et centraliser les données de la couverture du sol faisant partie intégrante de la 

mensuration officielle dans le modèle de données minimal fédéral en vigueur. 

Dans l’ensemble, ces besoins convergent vers des enjeux communs : améliorer l’efficacité des 

mises à jour, accroître la précision et la qualité des données, développer des outils partagés et 

un modèle de données commun, et renforcer la collaboration entre services pour une gestion 

plus cohérente, durable et concertée du territoire. (Cercle Couverture du Sol, 2025).  

2 Analyse des processus actuels de gestion et de mise à jour des revêtements  

La gestion de la couverture du sol constitue un enjeu majeur pour l'aménagement du territoire et 

la mise en œuvre des politiques publiques. Le système de mensuration officielle s'appuie sur un 

processus de mise à jour permanente impliquant trois catégories d'acteurs : les propriétaires 

fonciers, l'Association des Géomètres Genevois pour le relevé technique, et la DIT pour 

l'intégration des données. Le processus actuel traite plusieurs centaines de dossiers de mutations 

techniques annuellement. Une gestion précise des sols dans le Canton de Genève entraine des 

questionnements et notamment sur les revêtements associés aux différents objets qui constituent 

la surface sol cantonale. La qualité de l'information sur les types de surfaces ou revêtements 

dépend fortement des cartes, de leurs types de relevés et de la fréquence de ces relevés.   

 

La carte des milieux naturels (MN) a pour objectif de recenser et de cartographier les milieux 

naturels du canton de Genève. Pour ce faire, différentes sources de données sont mobilisées 

(tab.1) : orthophotos, données cadastrales, relevés et observations de terrain, ainsi que des 

contributions d’acteurs externes (communes, offices cantonaux, tiers). La carte fait l’objet de 

révisions annuelles qui intègrent notamment les données issues du référentiel végétal, des 

couches de base de la mensuration officielle ainsi que des données acquises par des partenaires 

institutionnels. Les observations et données collectées lors des relevés sont d’abord consignées 

dans les couches de travail, puis transférées vers la carte MN, conformément à un tableau 

d’équivalence défini par les instances compétentes. Inversement, la carte MN permet aussi de 

documenter et de compléter les zones du canton qui ne sont pas couvertes ou suffisamment 

décrites par les données cadastrales. Actuellement, le canton ne bénéficie pas d’un relevé  

homogène. En effet, les espaces publics et accessibles sont relevés selon un niveau de détails 

plus élevé que les zones privées ou difficiles d’accès. 
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Tableau 1 : synthèse de la mise à jour des données de la carte des milieux naturels 

 

Dans la carte Nature-Sol Sous la terminologie usuelle de nature du sol sont regroupés les 6 types 

de nature du sol (tab.2) : revêtement dur, verte, eau, boisée, sans végétation, autres natures. 

Seule la nature "revêtement dur" fait partie de la mise à jour permanente (Art. 23 OMO) effectuée 

dans le cadre de la conservation, contrairement aux autres natures dont la mise à jour est réalisée 

périodiquement.  

 

 

Tableau 2 : champ numérique de la carte Nature-Sol 

 
 

 

  



5 

 

L'infrastructure du Domaine routier est cataloguée en 9 objets distincts et chaque objet est 

découpé selon sa nature de revêtement (tab.3). Elle est mise à jour selon le principe de la mise à 

jour permanente (art. 23 OMO).  Natures de revêtements : arbustes, autre, béton, béton 

bitumineux, gazon, gravier, grille gazon, pavés, plates-bandes, prairie et terre.  

 

Tableau 3 : champ numérique de la carte Domaine Routier 

 
 

La carte Nature Sol couplée à celle des bâtiments hors sol ainsi que du domaine routier et la carte 

des milieux naturels offrent une partition complète du territoire ainsi que la connaissance des 

revêtements de certains objets qui peut être complétée par les codes MN des revêtements de la 

carte des Milieux Naturels. 

 

2.1 Problématique  

Actuellement, de nombreux acteurs gèrent des informations liées à la couverture du sol, sans 

qu'il existe une documentation complète des processus mis en place pour acquérir, mettre à jour 

et intégrer les données de la couverture du sol. Chaque service métier se charge d'acquérir des 

données pour ses besoins, selon des définitions et des classifications qui lui sont propres. 

L'objectif actuel de la DIT consiste, au-delà de l’exigence réglementaire de production mensuelle 

de la carte de couverture du sol conforme au modèle fédéral de la MO, d'enrichir le modèle de 

données standard par la complétion de l'attribut revêtement pour l'ensemble des objets publics 

et privés de la prochaine carte master de couverture des sols tout en optimisant le processus de 

collecte et de mise à jour des informations sur les revêtements en garantissant la soutenabilité 

opérationnelle.  

Dans ce but, ce travail cherche à répondre aux questions suivantes :  

➢ Est-il possible de détecter tous les types de revêtements ?  

➢ Est-il possible d'automatiser tout ou partie de la mise à jour des revêtements des objets 

de la couverture du sol?  

➢ L'apprentissage automatique (machine learning) est-il une piste d'amélioration et 

d'automatisation des processus ?  



6 

 

2.2 Objectifs du stage  

L’objectif principal de ce stage consiste à rechercher et expérimenter des outils et des traitements 

pour compléter les revêtements de la couverture du sol de Genève. Plus spécifiquement, ce 

travail vise à préciser les types de revêtements de type « dur - autre dur ». 

L'objectif secondaire de ce travail et de proposer des pistes d'automatisation de récolte de 

donnée ainsi que des évolutions techniques potentielles à questionner ou à poursuivre.  

3 Historique 

3.1 Création de la Carte de la couverture du sol  

 

L’OTEMO (Ordonnance technique du DDPS sur la mensuration officielle, 10 juin 1994) définit un 

catalogue fédéral de couverture du sol (art. 7-b) appliqué à tout le territoire suisse. La couche « 

couverture du sol » distingue 6 genres (CODE_OTEMO_1) et 25 sous-genres 

(CODE_OTEMO_2) qui regroupe notamment les bâtiments, les surfaces à revêtement dur, les 

surfaces vertes, les eaux, les surfaces boisées et les surfaces sans végétation, chacun subdivisé 

en catégories plus précises.  

Pour répondre à cette norme, la carte OTEMO résulte de la compilation de deux sources 

cantonales :  

• La Mensuration Officielle (MO), gérée par la Direction de l’information du territoire, qui 

fournit les données cadastrales officielles basées sur le modèle fédéral MD.01-MO-CH à 

partir d’un modèle de donnée cantonale plus riche.  

• La carte des milieux naturels du Grand Genève, produite par le SIPV et les Conservatoire 

et Jardin botaniques, mise à jour chaque année à partir d’orthophotos, d’observations 

terrain et d’autres données partenaires.  

 

Les données de la mensuration officielle, qui définissent la propriété foncière et alimentent le SITG, 

servent de référence : lorsqu’un géomètre relève une surface, celle-ci est intégrée dans la 

mensuration officielle puis transférée dans la MN via une table d’équivalence établie par la DIT et 

les CJBG. Inversement, la MN permet de documenter les zones non relevées par la MO, 

notamment dans les secteurs privés moins prospectés.  

 

4 Ressources disponibles  

4.1 Données SITG  

 

Satellite Pléiade Néo  

 

Les données raster participent à la production et l’actualisation de la couverture du sol. Elles 

permettent d’obtenir une information continue sur le territoire et constituent une source 

complémentaire aux données vectorielles, notamment pour l’identificat ion des textures ou des 

revêtements par télédétection. Les quatre satellites Pléiades Neo fournissent des produits 

orthographiques avec une résolution standard de 0,3 mètre. (Image Satellite Pléiades Néo Juin 

2025 (Pixel 25 Cm) | Catalogue SITG, 2025.)   
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LIDAR  

 

Les données LIDAR (Light Detection and Ranging) constituent une autre source de données. 

Elles permettent de produire des modèles numériques de terrain (MNT) et des modèles 

numériques de surface (MNS) avec une précision altimétrique centimétrique. Le nuage de points 

LIDAR, acquis lors de campagnes spécifiques, est utilisé pour dériver des informations telles que 

la hauteur de la végétation, la volumétrie des bâtiments ou la structure des surfaces. Ces données 

sont particulièrement utiles pour enrichir les indicateurs liés à la perméabilité et à la composition 

de la couverture du sol bâti.  

 

4.2 Données externes 

 

Open Street Map 

 

Les données vectorielles d’OpenStreetMap (OSM) constituent un ensemble de représentations 

géographiques structurées en entités géométriques (points, lignes et polygones) qui offrent une 

précision géométrique et thématique élevée. Chaque entité peut être enrichie d’attributs 

descriptifs si ces derniers ont été renseignés par la communauté. En effet, OSM est une base de 

données géospatiale collaborative et libre alimentée par une communauté mondiale de 

contributeurs. Les données y sont produites par numérisation, relevés GPS, imagerie satellitaire 

ou encore intégration de données publiques compatibles avec la licence ODbL (Open Database 

License).   

Dans OpenStreetMap, la clé surface permet de décrire le matériau ou le revêtement de la voie 

(route, chemin, piste cyclable, trottoir, etc.), avec des valeurs documentées classées en grandes 

catégories (pavée, non pavée, et surfaces spéciales sportives). Toutefois, l’usage de ce tag 

présente des limites : l’absence de couverture complète des surfaces dans certaines zones, le 

mélange d’échelles de précision (par ex. gravier lâche versus gravier compacté), et des variations 

dans les pratiques de contribution.   
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Figure 2 : la clé surface décrit le matériau ou le revêtement de la voie avec des valeurs documentées classées en 

grandes catégories 
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4.3 Outils 

 

ArcGIS Pro  

 

ArcGIS Pro est le principal logiciel de système d'information géographique (SIG) de bureau, conçu 

avec des innovations axées sur l'utilisateur et offrant des outils et capacités inégalés pour soutenir 

le travail géospatial. ArcGIS Pro offre des capacités complètes pour visualiser, gérer, traiter et 

analyser les images et les données raster issues de la télédétection. Ces capacités sont étendues 

dans l'extension ArcGIS Image Analyst qui propose des outils avancés d'analyse d'images pour 

la télédétection avancée et l'extraction semi-automatisée de caractéristiques. La télédétection 

extrait des informations significatives à partir d'images en appliquant des techniques de traitement 

pour identifier et extraire divers types d'informations telles que la santé de la végétation, ou le 

développement urbain. Les fonctionnalités incluent l'imagerie en perspective, la classification 

d'images et la reconnaissance de formes, l'apprentissage profond pour la reconnaissance de 

caractéristiques, la détection de changements entre plusieurs dates, ainsi que l'analyse 

multidimensionnelle et hyperspectrale (Esri, n.d.). Ainsi, ArcGIS Pro, grâce à ses classifers 

(tab.4), permet la télédétection par classification des images PléïadeNéo 6 bandes de juin 2025.  

 

Tableau 4 : classifieurs disponibles dans ArcGIS Pro 

Classifieurs ArcGIS Pro 
 

Classifieur Type Points forts Limites 

Maximum Likelihood Statistique Méthode classique, bonne 

pour classes gaussiennes 

bien séparées 

Suppose distribution 

normale ; sensible au bruit 

et corrélation de bandes 

Support Vector 

Machine (SVM) 

Machine Learning Excellente généralisation, 

très bon sur peu 

d’échantillons, efficace pour 

zones bâties 

Paramétrage du kernel 

parfois délicat 

Random Trees / 

Random Forest 

Machine Learning Très robuste, gère bruit, 

corrélations et variables 

nombreuses (textures, NDVI, 

etc.) 

Peut être un peu plus lent 

sur grandes scènes 

ISO Cluster / K-Means Non supervisée Pas besoin d’échantillons Moins précis ; utile en pré-

analyse 

Deep Learning (Pixel 

Classification / Object 

Detection) 

Apprentissage 

profond 

Très puissant si pas de labels 

et GPU 

Nécessite beaucoup de 

données et préparation 

spécifique 
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R dans RStudio  

 

RStudio est un environnement de développement intégré conçu pour supporter plusieurs 

langages dont R (Posit, n.d.). Il est disponible en versions open source et commerciales. RStudio 

inclut une console, un éditeur avec coloration syntaxique qui prend en charge l'exécution directe 

de code, ainsi qu'une variété d'outils robustes pour la création de graphiques, la visualisation de 

l'historique, le débogage et la gestion de l'espace de travail (Posit, n.d.).  

 

Classification supervisée par Random Forest dans R  

 

Random Forest est une méthode d'apprentissage par ensemble utilisée en machine learning, qui 

fonctionne en construisant plusieurs arbres de décision et en combinant leurs prédictions pour 

améliorer la précision globale et réduire le surapprentissage (Ozturk, 2023). L'algorithme Random 

Forest est un algorithme de classification et de régression supervisé qui, comme son nom 

l'indique, crée aléatoirement une forêt composée de plusieurs arbres. En général, plus il y a 

d'arbres dans la forêt, plus celle-ci est robuste et plus la précision des résultats est élevée 

(GeeksforGeeks, 2024). Random Forest peut gérer à la fois des variables numériques et 

catégorielles, ce qui le rend adapté à diverses tâches d'apprentissage automatique. Il peut être 

appliqué dans R en utilisant le package randomForest (Ozturk, 2023). La fonction randomForest() 

permet de classifier les données en spécifiant la variable à prédire en fonction de toutes les autres 

variables du jeu de données. Le modèle utilise généralement 500 arbres de décision pour 

effectuer les prédictions, et l'erreur Out-of-Bag (OOB) reflète la précision du modèle basée sur 

les données non utilisées durant l'entraînement (Statology, 2021). 

 

5 Méthodologie  

5.1 Acquisition des données 

 

Les données utilisées dans ce travail sont produites par deux organismes OpenstreetMap pour 

les données surfaces et la DIT pour les données du cadastre et la future carte  master de la 

couverture du sol.  

 

Couverture du Sol  

 

Depuis 2024, la DIT travaille à une nouvelle carte de la couverture du sol. Le modèle proposé, 

dénommé "COUVERTURE_DU_SOL 2025_V0.01", repose sur la fusion de sept couches métier 

issues de la base Oracle de gestion ArcSDE PRDH (modèle Topogéo) dont la fusion des couches 

et l'attribution initiale des valeurs ont été réalisées par des algorithmes de traitement spatial 

automatique 

1. A.CAD_NATURE_SOL 

2. A.CAD_DOMROUTIER_SURFACES_NIV0 

3. A.CAD_DOMROUTIER_SURFACES_NIV1 

4. A.CAD_DOMROUTIER_SURFACES_NIV_1 

5. A.CAD_OBJDS_PISCINE 

6. A.CAD_OBJDS_STEP_BASSIN 

7. A.CAD_OBJDS_TERRAIN_SPORT 
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Le modèle étendu présente plusieurs bénéfices opérationnels comme la simplification de la 

collecte et de la mise à jour des informations, une meilleure interopérabilité avec d'autres 

systèmes d'information géographique et une capacité d'analyse spatiale enrichie pour les 

politiques d'aménagement. Cette évolution proposée du modèle de données de couverture du sol 

représente une avancée significative vers une gestion territoriale optimisée qui adresse à la fois 

les exigences réglementaires fédérales et aussi les besoins cantonaux spécifiques. 

 

Tableau 5 : champ numérique de la carte de la Couverture du Sol 

Attributs 

Nom Type Description 

OBJECTID Entier Champ automatique avec l'identifiant de la base de chaque 

objet (Attention, ne pas l'utiliser comme identifiant unique 

permanent) 

PROVENANCE Texte Provenance de la donnée :- Terrestre (acquis sur la base 

de relevés terrestres ,chevillière, théodolite,...., à 

l'exception du nivellement géométrique ou de précision)- 

Digitalisation (acquis par digitalisation sur plan)- GNSS 

(acquis par observations GNSS uniquement)-Combiné 

GNSS/terrestre- Photogrammétrie- Nivellement technique 

et de précision- Autre- Orthophoto (acquis par 

l'intermédiaire de digitalisation sur orthophoto) 

OBJET Texte Type d'objet- Cours d'eau - Eau  canalisée souterraine - 

Fleuve - Autre - revêtement  dur - Route chemin - Jardin - 

Autre verte - Eau stagnante - Champ pré - Autre sans 

végétation - Vigne - Autre boisée - Chemin de fer - Place 

aviation - Tourbière - Trottoir - Ilot - Gravière décharge - 

Forêt dense - Roselière - Indéfini - Culture intensive - Lac - 

Eboulis sable - Ilot latéral - Surface latérale - Chemin - 

Espace de stationnement - Chaussée - Site propre 

transport en commun - Ilot circulation - Piste cyclable - 

Parking - Déchetterie - Pied d'arbre - Piscine privée - 

Piscine publique - Bassin - Terrain de sport 

REVETEMENT Texte Type de revêtement précise le revêtement de l'objet - Eau 

Type.dur - Type.vert - Type.sans végétation - Type.boisé - 

Ballast - Tourbière - Roselière - Inconnu - Prairie - Béton 

bitumineux - Pavés - Autre - Béton - Gazon - Terre - 

Graviers - Arbustes - Grille gazon - Plates-bandes 

MUTNUM Texte Numéro de mutation 

LAST_EDITED_DATE Date Date de mise à jour 

NIVEAU Entier Niveau par rapport au sol 

 

D'après les renseignements disponibles sur le portail SITG: "Dates d'acquisition : 10-18-25 juin 

2025 
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Image satell ite Pléiades Néo  

Les quatre satellites Pléiades Neo sont des satellites optiques de pointe qui fournissent des 

produits orthographiques d'une résolution de 0,3 mètre en standard. Placés sur la même orbite, 

en quadrature, avec un système optimisé et intelligent de répartition des tâches, auxquels 

s'ajoutent une liaison de communication laser vers les satellites de télécommunications 

géostationnaires SpaceDataHighway (également connus sous le nom de European Data Relay 

System, EDRS) et une gestion améliorée des prévisions météorologiques, ils fournissent des 

images de la plus haute qualité avec une réactivité sans précédent. 

Avec une durée de vie prévue de 10 ans, ils garantissent la fourniture d'images d'une résolution 

de 30 cm jusqu'en 2032 au moins. 

En combinant les bandes panchromatiques et multispectrales (tab.6), les images peuvent être 

visualisées en noir et blanc (résolution de 30 cm), en couleurs naturelles, en fausses couleurs 

(résolution de 1,2 m) ou sous forme de produit fusionné (image couleur panchromatique) avec la 

résolution d'une image panchromatique" (Airbus Defence and Space, 2021).  

 

Tableau 6 : tableau explicatif des longueurs d'ondes des bandes spectrales des images Pléiade Néo 

Deep Blue (400-450 nm) bathymétrie, aérosols atmosphériques 

Blue (450-520 nm) pénétration eau, sols nus 

Green (530-590 nm) réflectance végétation 

Red (625-695 nm) discrimination végétation/sols 

Red Edge (705-745 nm) stress végétal, chlorophylle 

Near Infrared (770-880 nm) biomasse, contenu en eau 

 

Modèle Numérique de Hauteur  

 

Le modèle numérique de hauteur (MNH) 2019 est obtenu en soustrayant le MNT du MNS ; il 

indique ainsi, en mètres, la hauteur des éléments présents sur le terrain — bâtiments, végétation, 

ponts, et autres objets — pour chaque point du territoire. 

Données Open Street Map  

Les données peuvent être téléchargées grâce à différents outils liés au projet OSM dont 

notamment : 

 Le site Geofabrik propose des extractions journalières « prêtes à l'emploi » de données OSM 

découpées par territoire. Elles peuvent être récupérées dans les formats spécifiques à OSM 

(osm zippé, pbf) ou directement en format Shape. 

 Overpass-turbo est un site qui propose une interface graphique multilingue par-dessus 

l'Overpass API afin d'en faciliter la prise en main par les utilisateurs. Il est possible de les 

exporter vers des formats de données géographiques (GPX, KML, GeoJSON). 
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 QuickOSM est une extension (plugin) du logiciel libre QGIS. Le téléchargement des données 

peut être effectué sur l'étendue de la carte affichée dans QGIS, l'emprise d'une des couches 

ou une entité géographique nommée. Les données téléchargées sont directement intégrées 

comme de nouvelles couches dans le logiciel.  

 Overpass API est une API qui permet d'interroger la base de données OSM depuis des 

serveurs distants. Elle propose un langage de requête très complet qui permet de 

sélectionner les données à télécharger selon un grand nombre de critères (tags des objets, 

types d'objets, localisation géographique, etc.). C’est la méthode utilisée dans RStudio. 

 (Contributeurs aux projets Wikimedia, 2025) 

 

5.2 Classification non-supervisée dans ArcGIS Pro  

5.2.1 Processus général  

Le schéma ci-dessous (fig. 3) résume les étapes principales appliquées lors de la classification 

non-supervisé. Après l’acquisition des images Pléiades Neo, du modèle numérique de hauteur 

(MNH) et de la couche « Couverture du sol », les données sont d’abord restreintes à la zone 

d’étude. Un filtrage altimétrique est ensuite appliqué afin de conserver uniquement les éléments 

dont la hauteur dépasse 40 cm, avant de reclasser ces objets en valeurs NODATA pour éliminer 

les structures élevées. Une composition en fausse couleur (bandes 6-4-3) est générée pour 

améliorer la distinction visuelle des surfaces, puis une classification non supervisée (ISO Cluster) 

est réalisée en cinq classes avec 25 itérations. Le résultat est affiné par un post-traitement visant 

à supprimer les ombres et à reclassifier les valeurs indésirables. Enfin, la classification est validée 

par des observations de terrain et l’orthophoto 2024, aboutissant à une cartographie finale des 

surfaces à revêtement dur. 
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Figure 3 : processus général de la classification non-supervisée dans ArcGIS Pro 

L’ensemble des traitements a été réalisé à l’aide du logiciel ArcGIS Pro 3.3.1  pour identifier et 

classifier les revêtements durs au sein de la zone d’étude localisée dans la ville de Genève  sans 

supervision dans le but de comprendre et de visualiser les possibilités et les limites de la 

télédétection pour les revêtements des objets de la couverture du sol . Les étapes 

méthodologiques sont décrites ci-après. 
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Définition de la zone d’étude  

 

Des polygones vectoriels des zones d’étude ont été créés et utilisés comme mask spatial afin de 

réduire la taille des données et permettre leur analyse . L’outil Clip a permis de découper 

l’ensemble des couches raster et vectorielles selon ces limites afin de garantir la cohérence 

spatiale des analyses suivantes. 

 

Sélection des surfaces d'études 

 

Le Modèle Numérique de Hauteur a été exploité afin d’exclure les objets qui dépassaient 0,40 m 

de hauteur soit la hauteur moyenne d'un banc. Le banc est un objet sélectionné arbitrairement 

pour décider d'une hauteur minimale à respecter afin d'isoler des revêtements de sols et non 

d'objets. L’outil Raster Calculator a été mobilisé pour appliquer un seuil altimétrique pour 

permettre de ne conserver que les surfaces considérées comme correspondantes à des 

revêtements durs potentiels. En sélectionnant 1 > 0.40m et 0 > 0.40m. Puis grâce à l'outil 

reclassify, la valeur zéro a été reclassifiée en NODATA. La figure 4 présente l’extrait d’image 

Pléiades Neo après application du filtrage altimétrique. 

 

Figure 4 : filtrage altimétrique des objets en hauteur grâce au Modèle Numérique de Hauteur 

 

Classif ication non-supervisée  

 

Une classification non-supervisée a été effectuée sur les surfaces du raster PléïadeNéo2025 avec 

les bandes 6, 4 et 3 (fig.5) Cette combinaison des bandes correspond à une composition en 

fausses couleurs Proche Infrarouge (PIR, 750-900 nm) - Rouge (620-690 nm) - Vert (530-590 

nm) (Airbus Defence and Space, 2021). La combinaison 6-4-3 exploite le "saut spectral" entre le 

rouge et le PIR, caractéristique fondamentale de la végétation (Schuster et al., 2012). Cette 

composition facilite l'identification visuelle et la classification automatisée des trois classes cibles 

(Weng et al., 2008).  
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Figure 5 : image fausse couleur 6-4-3 de la zone d'étude 

 

La discrimination fine asphalte-béton reste limitée en raison de leurs signatures spectrales 

proches liée au vieillissement des matériaux (Herold et al., 2004). Cinq classes et 25 itérations 

ont été sélectionnées pour représenter la diversité des revêtements durs la plus optimum. Les 

classes générées automatiquement ont été interprétées et spécifiées à partir de deux sources : 

(i) l’imagerie aérienne disponible, et (ii) des observations de terrain, réalisées sur site pour vérifier 

la correspondance réelle des classes. La figure 6 montre cette segmentation en cinq classes 

distinctes qui met clairement en évidence les principaux types de revêtements dans le périmètre 

des Gazomètres. 

 

 
Figure 6 : classification non supervisée ISO5 du secteur Gazomètres à 40cm du sol avec ombres 
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Suppression de la classe « ombre » 

 

La classification supervisée a généré une classe spécifique liée aux zones d’ombre. Cette classe 

a été retirée afin de ne pas biaiser l’analyse des revêtements. Le nettoyage a été réalisé par 

reclassement en attribuant la valeur NODATA à la classe des ombres comme peut être observé 

dans la figure 7 ci-après. 

 
Figure 7 : classification non supervisée ISO5 du secteur Gazomètres à 45cm du sol sans ombres 

 

Classification non supervisée sur l'image Pléiade Néo d'après les objets de la couverture du sol  

 

La zone étudiée ici se situe proche du Lac et majoritairement sur la commune de Choulex. Cette 

zone a été choisie en place de la zone des gazomètres pour offrir un meilleur nombre d'objets 

dont les revêtements étaient classés en type.dur autre dur sans toutefois être trop nombreux pour 

empêcher la bonne lisibilité des résultats. Enfin, c'est une zone suffisamment étendue sans 

demander des temps de traitement extrêmement longs.  Un filtrage thématique a été réalisé sur 

les données vectorielles disponibles. À l’aide d’une requête attributaire, seules les entités 

correspondant aux catégories de type « surfaces autre dur » ont été conservées dans une 

nouvelle couche. Cette nouvelle couche de polygones a servi à appliquer un clip sur le raster issu 

du filtrage altimétrique des volumes.  
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Figure 8 : images satellites d'après les polygones de la couverture du sol à 40cm du sol 

 

La classification ISO cluster non supervisée en 5 classes a ensuite été appliquée aux morceaux 

d’images correspondant aux polygones de la carte de la couverture du sol. Ce test a été effectué 

afin d’observer si la sélection des objets permettait de diminuer le « bruit » dans l’analyse en ne 

se concentrant que sur les zones d’intérêt. La figure 9 montre des résultats plutôt probants bien 

que toujours simplifiés puisque les 5 classes ne représentent pas la totalité des surfaces 

possibles. Ce test permet également d’observer que les polygones dont le revêtement est autre 

dur sont constitués d’une grande variété de surfaces différentes.  

 

 
Figure 9 : classification non supervisée ISO5 du secteur Cologny sur les images satellites d'après les polygones de la 

couverture du sol à 40cm du sol 
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5.2.2 Évaluation critique de l ’approche  

L’approche de classification non supervisée mise en œuvre dans ArcGIS Pro a permis d’obtenir 

des résultats assez satisfaisants pour la détection des revêtements après validation visuelle et 

validation terrain des résultats. L’imagerie Pléiade Néo est une base pertinente pour la 

discrimination des matériaux de surface du fait de ses 6 bandes spectrales. Mais la présence 

d’ombres impacte la signature spectrale des pixels et entraîne des confusions dans la 

classification. L’application d’un seuil altimétrique via le MNH s’est révélée utile pour exclure les 

objets non pertinents (mobilier urbain, végétation haute, bâtiments), mais la hauteur retenue reste 

arbitraire. 

L’utilisation d’une méthode non supervisée ISO Cluster en 5 classes a l’avantage de ne pas 

nécessiter d’échantillons d’apprentissage. Mais cette approche repose sur une interprétation a 

posteriori des classes, ce qui peut introduire une part de subjectivité lors de l’association des 

clusters à des types de revêtements réels. De plus, les matériaux qui présentent des signatures 

spectrales proches comme le béton clair et gravier compacté sont souvent regroupés dans une 

même classe. 

 

5.2.3 Perspectives d’amélioration  

Les zones d’ombre sont un facteur de confusion majeur. Malgré leur suppression a posteriori, 

certaines zones partiellement ombrées conservent une signature spectrale intermédiaire qui peut 

affecter les résultats. La validation par observation de terrain et comparaison avec des images 

aériennes a confirmé la pertinence générale des classes identifiées. Mais cette validation reste 

subjective. Une évaluation quantitative, par exemple via une matrice de confusion ou des indices 

de précision pourrait permettre d’objectiver la qualité de la classification et de mesurer les taux 

de confusion entre classes proches. 

Pour renforcer la robustesse de l’approche, plusieurs pistes peuvent être envisagées comme 

multiplier les indices spectraux NDVI, NDBI, etc. afin d’améliorer la discrimination entre surfaces 

minérales et végétales. Enfin, les images satellite Pléiade Néo présentent une limitation du fait 

d'occlusions causées par les bâtiments et autres structures verticales. Ce qui empêche 

l'observation des zones masquées par les bâtiments. 

 

5.3 Classification supervisée Random Forest sur la commune de Carouge  

 

Carouge est une commune fortement construite et traversée par l'Arve avec une présence limitée 

d’espaces agricoles ou forestiers. Cette zone rassemble au moins une fois chaque objet de la 

couverture du sol ainsi que la presque totalité des revêtements. Enfin, c'est une zone 

suffisamment étendue pour permettre un nombre important d'échantillons pour la classification 

supervisée sans toutefois demander des temps de traitement extrêmement longs.  

Une classification supervisée des images satellitaires Pléiade Néo avec apprentissage 

automatique Random Forest et généralisation objets-basée a été appliquée avec le langage R 

dans RStudio. La méthodologie a tenté de télédétecter automatiquement les revêtements de sols 

et de les généraliser aux polygones de la Couverture des sols avec un niveau de confiance 

contrôlé (≥80%). 
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5.3.1 Processus général  

Le schéma ci-dessous (fig. 10) résume les étapes principales appliquées lors de la classification 

supervisée par Random Forest qui permet de cartographier automatiquement l'occupation du sol 

à partir de l’image satellite Pléiades Néo. La méthode s'articule en sept étapes dans RStudio. 

D'abord, les données sources sont préparées et alignées géométriquement. Ensuite, les zones 

d'entraînement des sept classes sont sélectionnées manuellement. Elles permettent d'extraire 

près de 20 000 pixels avec leurs signatures spectrales. Ces données servent à entraîner un 

modèle Random Forest composé de 500 arbres de décision. Le modèle est alors appliqué à toute 

l'image pour produire une classification pixel par pixel. Une généralisation aux polygones de la 

carte de la couverture du sol est effectuée d’après sa classe majoritaire de plus de 80%.  Cette 

approche permet de classer 650 polygones soit 31%. Les polygones restants sont complétés 

grâce aux données OpenStreetMap. Enfin, les résultats sont validés et exportés. 

 

 

 

  

Figure 10 : processus général de la classification supervisée random forest dans RStudio 
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5.3.2 Analyse des Résultats de Classif ication Supervisée Pléiades Neo  

Données et prétraitements 

 

Image Satell ite RGB  

L'image Pléiades Neo (fig.11) en composition colorée naturelle (bandes Rouge-Vert-Bleu) 

présente la zone d'étude de Carouge découpée d’après les polygones de la carte de la couverture 

du sol avec une résolution spatiale de 30 cm. Les différentes typologies y sont observables 

distinctement. La bonne qualité radiométrique de l'image sera ensuite une plus-value dans la 

discrimination des surfaces artificielles des surfaces naturelles. 

 
Figure 11 : image satellite de la zone d'étude de Carouge en RGB 

Composition Infrarouge  

La composition en fausse couleurs NIR-Rouge-Vert de la figure 12 révèle l'activité 

photosynthétique de la végétation en rouge. Cette visualisation met en évidence le contraste entre 

les surfaces végétalisées et les surfaces minérales. On note particulièrement les bords de l'Arve 

en rouge et les espaces verts urbains dispersés dans le tissu bâti. Les surfaces en eau 

apparaissent en bleu. 
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Figure 12 : image satellite de la zone d'étude de Carouge IRC 

Zones d'Entraînement  

Les polygones d'entraînement visible sur la figure 13 sont distribués sur l'ensemble de la zone 

d'étude. Chaque classe (Arboré, Béton, Bitume, Eau, Herbe, Pierre, Terre) est représentée par 

plusieurs zones de l’images satellites afin de garantir la diversité spectrale intra-classe. La 

distribution des zones d'entraînement (les petits polygones noirs disséminés sur tout l'image RGB) 

montre la multiplicité des échantillons sur le terrain. 

 

 
Figure 13 : polygones d'entrainement des 7 classes sur la commune de Carouge 
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Distribution des Valeurs Spectrales par Bande  

 

Les six histogrammes de la Figure 14 montrent la distribution statistique des valeurs de 

réflectance pour l'ensemble des pixels d'entraînement (19 871 pixels) à travers chaque bande 

spectrale Pléiades Neo. Cette analyse permet de comprendre la signature radiométrique 

composite de l’image satellite de Carouge. 

Bande rouge  

La bimodalité de la bande rouge caractérise la dichotomie végétation/surfaces artificielles. Le pic 

gauche (500-800) correspond aux surfaces qui absorbent fortement dans le rouge soit la 

végétation photosynthétiquement active et les surfaces sombres. Le pic droit quant à lui (1200-

1500) représente les surfaces réfléchissantes comme le béton clair, la pierre calcaire, les toitures 

claires ou les sols nus secs. Cette distribution démontre l'hétérogénéité radiométrique du milieu 

urbain composé de surfaces absorbantes et surfaces réfléchissantes. 

Bande ver te  

Le vert présente une distribution plus étalée que le rouge avec trois pics. Le pic de gauche montre 

la végétation dont l’absorption chlorophyllienne moins prononcée qu'en rouge, donne un "pic vert" 

de réflectance. Le pic central dominant des surfaces urbaines diverses comme le béton, l’asphalte 

vieilli ou toitures composites. Et enfin le troisième pic à droite qui concerne les surfaces très 

claires. La position intermédiaire du pic principal (1000-1200) illustre que le vert capture une 

réflectance moyenne caractéristique des matériaux urbains courants. 

Bande bleue  

La concentration dans les valeurs basses de la bande bleue s'explique par : une faible réflectance 

des surfaces urbaines car la plupart des matériaux peu dans le bleu et la pénétration dans l'eau 

car le bleu pénètre plus profondément dans l'eau ce qui réduit la réflectance de surface. Le pic 

dominant autour de 0-200 indique que la majorité des surfaces urbaines sont optiquement 

sombres dans le bleu. 

Bande NIR 

La distribution de la bande souligne le contraste végétation/non-végétation le plus marqué. Le pic 

principal (0-500) correspond aux surfaces non-végétalisées qui ont une faible réflectance NIR par 

absence de structure cellulaire réfléchissante. La queue étendue (2000-6000) concerne la 

végétation active qui a une réflectance NIR très élevée du fait de sa structure cellulaire des feuilles 

et les valeurs maximales (4000-6000) correspondent à une végétation dense, saine et stratifiée 

comme la canopée. Enfin, la zone intermédiaire (500-2000) reflète une végétation éparse ou 

stressée. Cette distribution démontre que le NIR est bien la bande la plus discriminante pour 

séparer végétation et surfaces artificielles. 

Bande red edge  

Interprétation physique : La Red Edge se situe dans la zone de transition spectrale entre le rouge 

et le NIR. Le pic de gauche (500-1000) concerne les surfaces non-végétalisées et la végétation 

stressée alors que le pic droit (1500-3000) concerne la végétation active. Cette bande permet de 
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discriminer les types de végétation et d’évaluer la santé végétale. Elle apporte donc une 

information complémentaire sans être aussi discriminante que le rouge ou le NIR.  

Bande bleu profond 

On lit ici une concentration extrême dans les très basses valeurs du fait de l’absorption 

généralisée puisque la plupart des surfaces naturelles et artificielles absorbent fortement dans le 

bleu profond. Ainsi, seules les surfaces exceptionnellement claires réfléchissent significativement . 

Le pic massif entre 0 et 200 indique que dans un contexte urbain, le Deep Blue apporte surtout 

une information sur les conditions atmosphériques et les ombres. 

Contraste Inter-Bandes 

La bande NIR avec son histogramme entre 0-6000 est la plus variable et la bande deep Blue avec 

son histogramme entre 0-2000 est la moins variable. Cette gradation démontre que la bande 

infrarouge est la plus essentielle pour discriminer les surfaces en milieu urbain. 

Implications pour la Classification  

Les bandes de végétation (NIR, Red Edge, Red) avec leur distribution bimodale marquées 

permettent une bonne séparation végétation et non-végétation avec une haute capacité 

discriminante. La bande verte avec sa distribution trimodale renseigne la diversité des surfaces 

artificielles. Quant aux bandes bleue et bleu profond, bien que leur distribtuion soit concentrée, 

elles informent sur les ombres et l’eau. 

 

Validité de l 'Échanti l lonnage  

La continuité des distributions montre que l'échantillonnage d'entraînement couvre bien l'espace 

spectral de la zone d'étude. Les 19 871 pixels d’entrainement représentent la diversité 

radiométrique de l’image satellite de Carouge. 

 

Figure 14 : histogramme de la distribution des pixels d'entrainement par bande spectrale 
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Distribution des Pixels par Classe d'Entraînement  

L'échantillonnage présente une répartition déséquilibrée mais représentative  (fig.15). Cette 

distribution reflète la surreprésentation des différentes surfaces dans la zone urbaine étudiée dont 

l’Herbe qui a la classe dominante avec environ 8200 pixels et la terre qui est la classe la plus 

basse avec 250 pixels. Ce qui est représentatif de la création des classes d’entrainement car la 

classe terre est plus difficile à détecter sur des images satellite et même sur orthophoto et se 

confond facilement avec d’autres types de surfaces. De plus, c’est une classe parfois 

« éphémère » comme dans le cas de jardin en cours de plantation ou de pelouses abimées. 

Cependant, le déséquilibre est géré par l'algorithme Random Forest qui pondère 

automatiquement les classes. 

 

 
Figure 15 : nombre de pixels par classe d'entrainement de l'image satellite de Carouge 

Signatures Spectrales par Classe  

Les boxplots (fig.16) révèlent la « séparabilité » spectrale des classes. La végétation soit l’herbe 

et l’arboré ont une faible réflectance dans le rouge du fait de l’absorption chlorophyllienne) mais 

une forte réflectance dans le NIR. L’arboré présente une réflectance NIR légèrement supérieure à 

l'Herbe. Les surfaces artificielles telles que le béton le bitume ou la pierre dans des ranges 

proches. Cependant le bitume a réflectance plus faible dans plusieurs bandes grâce à sa surface 

sombre. Le béton a une réflectance moyenne à élevée avec augmentation progressive du bleu au 

NIR et la pierre la réflectance la plus élevée des trois. L’eau a une réflectance très faible dans 

toutes les bandes quoique légèrement supérieure dans le bleu et la terre une réflectance moyenne 

avec augmentation vers le rouge et NIR 
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Figure 16 : signature spectrale des classes pour chaque bande de l'image satellite de Carouge  

La Figure 16 montre donc que les signatures spectrales observées correspondent bien aux 

principes de base de la télédétection : la végétation absorbe dans le visible et réfléchit fortement 

dans le NIR, tandis que les matériaux urbains suivent un gradient lié à leur couleur et leur état. 

Les six bandes Pléiades Neo sont complémentaires, avec le Red et le NIR offrant la meilleure 

séparation entre classes. Les boxplots montrent quelles classes sont très fiables et lesquelles 

autres demandent plus de vérifications. Au final, la classification repose sur des signatures plutôt 

claires. 

 

Performances du modèle Random Forest   

 

L'analyse de l'importance (fig.17) révèle la contribution de chaque bande. Le 

MeanDecreaseAccuracy est l’impact sur la précision et le MeanDecreaseGini concerne la pureté 

des nœuds. La bande rouge se révèle la plus discriminante pour séparer les classes, suivie du 

NIR crucial pour identifier la végétation. La complémentarité des six bandes assure une 

classification robuste. 
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Figure 17 : analyse de l'importance de chaque bande Pléiade Néo 

Convergence de l 'Erreur OOB  

La courbe d'erreur Out-Of-Bag (fig.18) montre une convergence rapide après environ 100 arbres, 

se stabilisant à 1,64%. Cette faible erreur témoigne d'un apprentissage optimal avec 500 arbres. 

L'absence d'oscillations en fin de courbe confirme que le modèle n'est pas en surajustement.  

 
Figure 18 : courbe d'erreur Out-of-bag 
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5.3.3 Classif ication pixel basée  

La comparaison de l'image RGB originale et de la classification (fig.19) permet de valider 

visuellement la cohérence de l’analyse. Les espaces verts sont correctement identifiés, le réseau 

hydrographique est bien délimité. Les infrastructures routières sont fidèlement représentées et les 

zones bâties montrent une mosaïque réaliste de matériaux différents. 

La classification complète pixel par pixel met quant à elle bien en évidence la diversité de 

l’occupation du sol urbain. L’Herbe, en beige clair est largement présente dans les différents 

espaces verts tandis que l’Arboré, en rouge, se situe surtout le long de l’Arve et dans les grands 

parcs. Le Béton, en vert clair, correspond aux toitures claires et aux parkings et le Bitume, en vert 

foncé, représente le réseau routier. La Pierre, en bleu foncé, semble renvoyer aux toitures en tuiles 

et aux surfaces minérales claires, alors que l’Eau, en cyan, suit l’Arve et les zones aquatiques. La 

Terre, en magenta, n’apparaît que sur quelques surfaces nues. L’ensemble montre une bonne 

lecture de l’hétérogénéité spatiale à 30 cm, même si un léger effet « sel-poivre » reste visible.  

 

 
Figure 19 :  juxtaposition de l'image RGB originale et de la classification  
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5.3.4 Généralisation aux polygones 

Distribution des pourcentages de classe majoritaire et justification du seuil de 

classification  

 

L'histogramme de distribution des pourcentages de classe majoritaire par polygone (Figure 20) 

révèle une structure bimodale caractéristique de l'hétérogénéité du tissu urbain. Un pic majeur se 

situe à 100% de pureté, représentant environ 230 polygones parfaitement homogènes, tandis 

qu'une distribution étalée entre 30% et 75% caractérise les espaces mixtes combinant plusieurs 

types d'occupation du sol. Le seuil de classification retenu à 80%, matérialisé par une ligne rouge 

verticale, constitue un compromis méthodologique entre exhaustivité et fiabilité. Ce seuil permet 

d'isoler les polygones présentant une dominance claire d'une classe unique, garantissant ainsi 

une attribution robuste, tout en excluant les zones trop hétérogènes dont la classification univoque 

serait artificiellement réductrice. Cette approche conservatrice reconnaît explicitement que 

certains espaces urbains, par leur nature intrinsèquement composite, nécessitent une 

représentation multi-classe plutôt qu'une simplification catégorielle qui pourrait induire des erreurs 

d'interprétation dans les analyses ultérieures. 

 

Figure 20 : l'histogramme de distribution des pourcentages de classe majoritaire par polygone 

Répartition spatiale des polygones classifiés et identification des typologies urbaines homogènes 

La cartographie des polygones classifiés (Figure 21) met en évidence une dichotomie spatiale 

nette entre les 650 polygones classifiés en couleur, représentant 31,2% du total, et les 1 430 

polygones non classifiés en gris, constituant 68,8% de l'ensemble cadastral. L'analyse de la 

distribution spatiale des polygones classifiés révèle qu'ils se concentrent dans des typologies 
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urbaines spécifiques caractérisées par leur uniformité fonctionnelle et matérielle. Les grands 

espaces verts publics tels que les parcs, les infrastructures de transport comme les parkings et 

les axes routiers continus, les grandes emprises bâties aux toitures uniformes, ainsi que les 

surfaces hydrographiques présentent une homogénéité suffisante pour satisfaire au critère des 

80%. À l'inverse, les polygones non classifiés correspondent majoritairement aux parcelles 

résidentielles où coexistent végétation et bâti, aux zones de transition entre différentes 

affectations du sol, ainsi qu'aux petits polygones pour lesquels l'effet de bord introduit une mixité 

spectrale artificielle liée à la résolution spatiale du capteur. Cette partition spatiale témoigne donc 

moins d'une défaillance méthodologique que d'une représentation fidèle de l'hétérogénéité 

intrinsèque du paysage urbain, où seules certaines configurations spatiales se prêtent à une 

classification univoque sans perte d'information. 

 
Figure 21 : cartographie des polygones classifiés 

 

Synthèse statistique  

 

Distribution finale des classes et prédominance des surfaces arborées  

 

L'analyse statistique des 650 polygones ayant satisfait au critère de classification révèle une 

distribution fortement déséquilibrée en faveur de la classe Arboré, qui représente 500 polygones 

soit 76,9% de l'ensemble classifié (Figure 22). Cette dominance écrasante contraste avec les six 

autres classes dont les effectifs demeurent modestes : le Béton compte 115 polygones 

représentant 17,7% du total, tandis que Terre, Pierre, Bitume, Herbe et Eau ne totalisent ensemble 

que 5,4% avec respectivement 40, 38, 18, 15 et 4 polygones. Cette répartition s'explique par 
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deux facteurs concomitants. D'une part, elle reflète la composition réelle de la zone d'étude de 

Carouge, caractérisée par une végétation arborée abondante dans les parcs, les alignements 

d'arbres et les espaces verts publics. D'autre part, elle illustre un biais de sélection inhérent à la 

méthode : les surfaces arborées forment naturellement des étendues homogènes continues 

répondant plus facilement au critère des 80%, contrairement aux surfaces minérales urbaines qui 

se présentent fréquemment sous forme de mosaïques hétérogènes mêlant différents matériaux. 

La prédominance de l'Arboré dans les résultats ne signifie donc pas nécessairement sa 

prédominance surfacique absolue sur le territoire, mais plutôt sa plus grande propension à former 

des unités spatiales homogènes détectables par classification supervisée. 

 

Figure 22 : distribution des polygones de la couverture du sol par revêtement  

Validation de la cohérence méthodologique par les indices de pureté  

L'analyse des statistiques détaillées par classe (Figure 23) confirme la robustesse du protocole 

de classification adopté. Le graphique illustrant le pourcentage moyen de pureté démontre que 

l'ensemble des sept classes présentent des valeurs comprises entre 87% et 90%, avec des 

variations inter-classes inférieures à 5%. Cette homogénéité remarquable des indices de pureté, 

malgré les différences substantielles d'effectifs entre classes, valide empiriquement la pertinence 

du seuil fixé à 80%. En effet, l'absence d'écart significatif entre la classe Arboré dominante et les 

classes minoritaires comme Eau ou Terre indique que le critère de classification ne favorise 

aucune classe particulière mais applique un standard de qualité uniforme. Les pourcentages 

moyens systématiquement supérieurs au seuil de 80%, avec une marge de 7 à 10 points, 

témoignent d'une application conservatrice du critère évitant les cas limites ambigus. Cette 

convergence des indicateurs de pureté autour de 88-89% suggère l'existence d'une limite 

naturelle de l'homogénéité spatiale en contexte urbain, au-delà de laquelle même les espaces les 

plus uniformes présentent une variabilité résiduelle de 10-12% liée aux effets de bord, aux ombres 

portées ou à la microvariabilité des matériaux. 
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Figure 23 : l'analyse des statistiques détaillées par classe 

5.4 Résultat classification supervisée  

 

La classification supervisée atteint une précision de 98,36% à l'échelle pixel, mais cette 

performance ne garantit pas la correspondance avec les revêtements réels au sol. Les images 

satellites Pléiades Neo captent la surface visible et non nécessairement le revêtement effectif  

(fig.24). Par exemple, les arbres masquent les surfaces sous leur canopée, ce qui conduit à 

classifier de l'herbe ou de l'arboré là où se trouvent des parkings, des chemins ou des terrasses. 

Un autre exemple sont les chantiers en cours qui présentent des surfaces temporaires qui ne 

correspondent pas au revêtement final. En effet, les zones en transition entre deux états 

(démolition, construction, rénovation) peuvent générer des signatures spectrales alors ambiguës. 

Les objets verticaux comme les bâtiments créent des occlusions qui empêchent l'observation des 

cours intérieures, des allées latérales ou des espaces entre constructions. La classification 

détecte ce qui est visible dans l'image, non ce qui existe au sol. 

 

  

Figure 24 : polygone de la couverture du sol dont la détection est arborée 

61 
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Résultats enrichissement par données OpenStreetMap  

 

L'intersection spatiale entre les polygones OpenStreetMap et ceux de la couverture du sol 

présente des incohérences géométriques (fig.25). Les données OSM sont structurées en lignes 

pour les voies de circulation, avec un attribut de revêtement qui décrit la surface linéaire, tandis 

que la couverture du sol utilise des polygones surfaciques. L'intersection d'une ligne OSM avec 

un polygone de couverture du sol ne garantit pas que le revêtement de la ligne corresponde au 

revêtement dominant du polygone. Un chemin en gravier qui traverse un parc herbeux peut 

conduire à attribuer "gravier" à tout le polygone du parc. Les décalages planimétriques entre les 

référentiels géométriques OSM et cadastraux génèrent des intersections avec des polygones 

adjacents parfois non pertinentes. La granularité des données OSM ne correspond pas à celle 

de la couverture du sol : une rue peut avoir plusieurs revêtements (chaussée bitumineuse, trottoirs 

béton, pistes cyclables pavées) alors que OSM n'en renseigne qu'un seul. La méthode de 

sélection par aire maximale d'intersection introduit donc un biais lorsque plusieurs entités OSM 

se chevauchent ou lorsque les géométries sont imprécises. 

 

   

Figure 25 : incohérences géométriques entre OpenStreetMap et la couverture du sol  
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5.4.1 Conclusion Random Forest 

La classification supervisée sur l'imagerie Pléiades Neo de Carouge atteint une précision de 

98,36% à l'échelle du pixel, avec une erreur Out-Of-Bag de 1,64%. Ces résultats s'expliquent par 

la séparabilité spectrale des sept classes d'occupation du sol dans l'espace formé par les six 

bandes spectrales de Pléiades Neo, du bleu profond au proche infrarouge. La complémentarité 

de ces bandes permet une discrimination entre surfaces végétalisées, surfaces minérales et 

surfaces hydrographiques. 

Le passage de l'échelle pixel vers l'échelle objet révèle les limites de toute classification en milieu 

urbain hétérogène. L'approche fondée sur un seuil de pureté de 80% garantit une fiabilité des 

attributions au prix d'une couverture spatiale de 31,2% des polygones cadastraux. Cette limitation 

constitue un choix scientifique qui privilégie la qualité à l'exhaustivité. 

La dominance des surfaces arborées parmi les polygones classifiés, représentant 77% du total, 

reflète le caractère semi-végétalisé de Carouge et la propension de la végétation à former des 

ensembles homogènes classifiables. Les 68,8% de polygones non classifiés ne constituent pas 

un échec mais une reconnaissance de la diversité du tissu urbain. Cette situation suggère l'intérêt 

de méthodes complémentaires : classification orientée-objet, intégration de données auxiliaires 

ou approches multi-échelles pour caractériser l'occupation du sol. 

 

6 Limites  

OpenStreetMap est une base de données collaborative dont la complétude et la précision varient 

spatialement (Haklay, 2010 ; Barrington-Leigh & Millard-Ball, 2017). La qualité de 

l'enrichissement dépend donc directement de l'activité contributive dans la zone d'étude. 

Plusieurs études ont démontré que la qualité des données OSM est généralement comparable 

aux données officielles dans les zones urbaines des pays développés (Girres & Touya, 2010 ; 

Zielstra & Zipf, 2010), mais peut présenter des lacunes significatives dans d'autres contextes 

géographiques. 

Le principe de sélection par aire maximale suppose une homogénéité du revêtement au sein de 

chaque polygone source. Dans les cas de polygones hétérogènes, cette approche peut introduire 

un biais de simplification. Des méthodes alternatives comme l'agrégation pondérée par surface 

ou l'analyse multicritères, pourraient être envisagées pour améliorer la représentativité de 

l'attribution dans les contextes complexes (Goodchild & Li, 2012). 

Les taxonomies de classification des surfaces peuvent différer entre le jeu de données source et 

OpenStreetMap, ce qui pourrais potentiellement nécessiter une table de correspondance pour 

harmoniser les nomenclatures (Jokar Arsanjani et al., 2015). L'intégration de données 

hétérogènes demande une attention particulière aux questions d'interopérabilité sémantique 

(Kuhn, 2005). 
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7 Pistes et recommandation  

Les images satellite Pléiade Néo présentent une limitation du fait d’absences de visibilité causées 

par les bâtiments qui empêchent l'observation des zones masquées. Une piste serait d’utiliser les 

images true ortho. Les orthophotos standard présentent des zones cachées (occlusions) derrière 

les bâtiments. Les true ortho combleraient ces zones masquées en utilisant plusieurs clichés sous 

différents angles. On sélectionnerait alors, pour chaque zone cachée, le meilleur cliché oblique 

où le sol est visible. L'assemblage des clichés permettrait de produire une image composite sans 

zones masquées. 

 

Une autre piste serait de s’inspirer du travail de l’AlphaEarth Foundations. L’AEF est une nouvelle 

intelligence artificielle développée pour créer des cartes détaillées de notre planète à partir 

d'images satellites (Brown et al., 2025). Cette nouvelle technologie a la capacité de fonctionner 

avec peu d'images annotées manuellement. Le modèle fonctionne en créant ce qu'on appelle un 

"champ d'embedding", une sorte de représentation numérique condensée qui capture l'essence 

de chaque endroit sur Terre en combinant des informations spatiales (où c'est situé), temporelles 

(quand l'image a été prise) et instrumentales (quel type de capteur a été utilisé) de sources 

multiples (Brown et al., 2025). Cette approche permet à AEF de surpasser les autres méthodes 

testées, en réduisant les erreurs d'environ 24% en moyenne, sans avoir besoin d'être réentraîné 

pour chaque nouvelle tâche cartographique (Google DeepMind, 2025). 

Pour le canton de Genève, cette technologie pourrait fortement aider la détection des surfaces. 

Cela signifie qu'il n'y aurait pas besoin d'envoyer des équipes sur le terrain pour photographier et 

identifier manuellement des milliers d'échantillons de chaque type de revêtement à travers tout le 

canton. Quelques centaines d'exemples pourraient suffire pour qu'AEF apprenne à reconnaître et 

classifier automatiquement tous les revêtements du territoire. 

Un autre moyen d'AEF serait de combiner différentes sources de données satellites. Le système 

peut intégrer simultanément des Pléiade Néo, des données d'altitude LiDAR même du texte 

géolocalisé extrait d'internet (Brown et al., 2025). Ces apports multiples permettraient de 

distinguer des surfaces qui se ressemblent visuellement mais qui ont des propriétés différentes. 

Par exemple, un parking en asphalte et une route pavée peuvent avoir des couleurs similaires sur 

une photo mais leurs signatures radar et leurs textures fines permettraient à AEF de les 

différencier.  

La dimension temporelle d'AEF représente également un avantage significatif pour Genève 

(Brown et al., 2025). Le système peut créer des représentations continues dans le temps, même 

quand les satellites ne peuvent pas prendre de photos à cause des nuages ou d'interruptions 

techniques. Cette fonctionnalité permet de suivre l'évolution des revêtements au fil des années et 

aider à identifier comment le canton se transforme en identifiant les nouvelles zones bétonnées 

qui contribuent à l'imperméabilisation des sols par exemple. 
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8 Conclusion et discussion 

Ce travail a exploré trois approches complémentaires pour la détection et la classification 

automatisée des revêtements de sol à partir d'imagerie satellitaire Pléiades Neo : la classification 

non supervisée ISO Cluster, la classification supervisée par Random Forest et l'enrichissement 

par données collaboratives OpenStreetMap. Chaque méthode présente des avantages et des 

limites qui méritent d'être discutés dans le contexte opérationnel de la DIT.  

La classification non supervisée ISO Cluster a permis de segmenter rapidement l’espace spectral 

sans demander d’échantillons d’apprentissage préalables. Cette approche s’est révélée 

particulièrement utile en phase exploratoire pour identifier les grandes catégories de revêtements 

présentes sur le territoire. Le filtrage altimétrique par MNH à 40 cm s’est avéré pe rtinent pour 

isoler les surfaces au sol des objets en élévation même si ce seuil reste arbitraire et pourrait être 

affiné selon les typologies d’objets urbains. Plusieurs limites structurelles ont été identifiées. 

Premièrement, la sensibilité aux ombres car les zones ombrées ont des signatures spectrales qui 

perturbent la classification et ce malgré la suppression de la classe « ombre ». Deuxièmement, 

l’approche non supervisée ne permet pas non plus de distinguer finement les matériaux qui ont 

des signatures spectrales proches. L’interprétation a posteriori des classes introduit une 

subjectivité qui limite la reproductibilité.  

La classification supervisée Random Forest présente de bonnes performances à l’échelle pixel, 

avec une précision globale de 98,36 % et une erreur Out-of-Bag de 1,64 % sur la zone test de 

Carouge. Ces résultats confirment la pertinence de l’algorithme pour discriminer des classes 

spectralement distinctes. L’analyse de l’importance des bandes montre l’importante du rouge et 

du proche infrarouge. L’apport des six bandes Pléiades Neo, dont le bleu profond, constitue un 

avantage important. Le passage de l’échelle pixel à l’échelle objet a tout de même des limites 

dans un environnement urbain très diversifié. Le seuil de consensus de 80 % n’a permis de 

classifier que 31,2 % des polygones de la couverture du sol, ce qui reflète la diversité spatiale du 

tissu urbain. Les 68,8 % de polygones non classifiés concernent principalement les zones 

résidentielles composites, les zones de transition et les petits polygones affectés par les effets de 

bord. La forte proportion de polygones arborés classifiés (76,9 %) s’explique par leur 

homogénéité naturelle et leur présence importante à Carouge. 

L’intégration des données OpenStreetMap constitue une piste pour compléter les lacunes de la 

télédétection. La qualité des données OSM en Suisse est généralement élevée, mais variable 

selon les secteurs. L’approche fondée sur l’intersection spatiale et la sélection de la plus grande 

surface de chevauchement offre une solution pragmatique pour enrichir automatiquement les 

polygones non classifiés.  

Les résultats montrent qu’une automatisation partielle de la mise à jour de la couverture du sol 

est réaliste. Une stratégie hybride apparaît la plus adaptée. La première composante repose sur 

la classification automatisée pour les surfaces homogènes de grande taille. La seconde 

composante consisterait en un enrichissement semi-automatique basé sur OSM pour les zones 

bien documentées, accompagné d’une validation ciblée.  
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Les données visuelles « manquante » sous les immeubles ou sous les arbres restent un problème 

majeur pour les images Pléiades Neo, même à 30 cm de résolution. Les conditions d’acquisition 

influencent les performances. Des séries temporelles amélioreraient la discrimination des classes. 

 

L’ajout d’indices spectraux, l’intégration de descripteurs de texture ou d’informations contextuelles 

pourrait améliorer la performance de la classification. La fusion de données multi -sources comme 

le LiDAR, l’imagerie oblique ou radar ouvre des perspectives intéressantes. Les méthodes 

d’apprentissage profond, en particulier les modèles pré-entraînés comme AlphaEarth 

Foundations, pourraient accroître la performance et réduire les besoins en données 

d’entraînement. 

 

9 Réflexions sur le déroulement du stage  

Le stage s'est déroulé dans de très bonnes conditions. L'encadrement comprenait notamment un 

suivi hebdomadaire qui a permis d'échanger sur l'avancement des travaux et d'ajuster les 

orientations. L'équipe de la DIT comprend les compétences techniques nécessaires et s'est 

montrée disponible pour répondre aux questions. Une présentation du service et une mise en 

relation avec les collaborateurs a facilité mon intégration. Le poste de travail était bien équipé et 

l'espace de travail était confortable. Cependant, les protocoles de sécurité informatique de 

l'administration ont restreint l'accès à certains logiciels, notamment RStudio, ce qui a nécessité 

des adaptations soit l’utilisation du matériel disponible à la salle informatique de l’université Carl 

Vogt. Mes compétences limitées en FME, liées aux choix de cours effectués durant le certificat 

de géomatique, ne m’ont pas permis de tester certaines approches méthodologiques ce qui peut 

être un point négatif. 

 

Mes compétences en ArcGIS et dans Rstudio ont répondu aux exigences du stage. La maîtrise 

de ces outils a permis de mener à bien les analyses requises. Le recours aux assistants 

d'intelligence artificielle (ChatGPT, Claude) pour le développement de scripts R a également 

permis d'accélérer l'apprentissage et de résoudre les problèmes techniques. Le manque de 

compétences en FME a constitué, pour moi, une lacune. Ce logiciel m’aurait offert des approches 

complémentaires pour certains traitements. Cette place de stage convient aux personnes qui 

maîtrisent ArcGIS et possèdent des bases en programmation R, qui souhaitent approfondir leurs 

compétences analytiques en géomatique et qui apprécient l'autonomie dans la réflexion. Ce stage 

a nécessité une démarche analytique plutôt approfondie et s’est moins situé dans de l’exécution 

de process. 

 

Améliorations possibles  

 

Une négociation avec le service informatique pourrait permettre une installation plus souple de 

logiciels open source comme RStudio. Une formation d'introduction à FME en début de stage 

élargirait la palette d'outils disponibles. Des échanges plannifiés avec d'autres services qui 

travailleraient sur des thématiques connexes aurait pu encore développer la recherche.  
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Conclusion 

 

Ce stage m’a permis de consolider mes compétences techniques et de développer une approche 

méthodologique rigoureuse : réflexion sur les problématiques, recherche documentaire, maîtrise 

des outils d'analyse, interprétation des résultats. 

Le stage a révélé le potentiel futur d'approches comme l'application du machine learning comme 

le random forest dans la détection des sols. Cette piste pourraient être explorée dans une 

recherche plus approfondie des explorations de mon stage. 
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ANNEXE I – Code R expliqué 

 

 

La méthodologie s'appuie sur trois jeux de données géospatiales : 

 

1. Imagerie satellitaire multispectrale Pléiades Neo 6 bandes spectrales de la commune de 

Carouge 

 

satellite <- rast(file.path(data_dir, "Satellite_Carouge.tif")) 

names(satellite) <- c("Red", "Green", "Blue", "NIR", "RedEdge", "DeepBlue") 

 

 

2. Couche de référence géométrique 

La couverture du sol vectorielle (n = 3720 polygones) dont les polygones servent pour la 

généralisation objet-basée. 

 

3. Échantillons d'entraînement supervisé 

Un ensemble de polygones de référence (n = 268) produite à partir de l'image PléïadeNéo 

dans Arcgis Pro. 

 

Harmonisation des systèmes de coordonnées 

 

L'homogénéité des systèmes de référence spatiale constitue un prérequis pour l'extraction 

radiométrique. Une reprojection à la volée est appliquée : 

 

training_sample <- st_transform(training_sample, crs = crs(satellite)) 

sol_carouge <- st_transform(sol_carouge, crs = crs(classified_raster)) 

 

Cette transformation garantit l'alignement pixel-parfait entre données vectorielles et matricielles, 

conformément aux standards Simple Features établis pour R (Pebesma, 2018). 

 

Stratégie d'échantillonnage spectral 

 

La méthodologie implémente un échantillonnage exhaustif des pixels contenus dans chaque 

polygone de référence. Cette fonction réalise une intersection géométrique entre les 268 

polygones d'entraînement et la grille raster. Elle extrait l'intégralité des signatures spectrales à six 

dimensions contenues dans chaque entité vectorielle. Le paramètre ID = TRUE préserve la 

traçabilité polygon-pixel essentielle pour l'attribution de classe. 

 

training_values <- extract(satellite, vect(training_sample), ID = TRUE) 

 

 

 Attribution des labels et structuration des données 
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La jointure entre valeurs spectrales et classes nominales s'effectue par correspondance d'indices 

: 

 

training_data <- training_values %>% 

mutate(Classe = training_sample[[class_col]][ID]) %>% 

select(-ID) %>% 

mutate(Classe = as.factor(Classe)) 

 

Ce processus génère un tableau de données où chaque observation représente un pixel 

caractérisé par : 

• Variables prédictives : six valeurs de réflectance spectrale (R, G, B, NIR, RedEdge, 

DeepBlue) 

• Variable de réponse : classe catégorielle de revêtement 

 

La transformation en facteur (as.factor()) est impérative pour l'algorithme de classification 

supervisée. 

 

2.3 Validation de la distribution d'échantillonnage 

 

Des contrôles statistiques préalables vérifient l'adéquation de la base d'apprentissage :  

if (length(unique(training_data_clean$Classe)) < 2) { 

stop("ERREUR: Une seule classe présente dans les données extraites!") 

} 

 

Critères de validation : 

• Présence d'au moins deux classes distinctes (condition nécessaire pour la discrimination)  

• Absence de valeurs manquantes (na.omit()) 

• Effectif minimal recommandé : n ≥ 100 pixels par classe (règle empirique pour Random 

Forest) 

 

La distribution finale de l'échantillonnage est documentée via des tableaux de contingence :  

 

class_distribution <- table(training_data_clean$Classe) 

print(prop.table(class_distribution) * 100) 

 

Modélisation Random Forest 

 

L'algorithme Random Forest (Breiman, 2001) appartient à la famille des méthodes d'ensemble 

par agrégation de type bagging. Il construit k arbres de décision indépendants entraînés sur des 

sous-échantillons bootstrap des données d'apprentissage, chaque nœud de division sélectionne 

un sous-ensemble aléatoire de variables candidates. La prédiction finale résulte d'un vote 

majoritaire (classification) ou d'une moyenne (régression) des prédictions individuelles. 

Avantages pour la télédétection : 

• Robustesse aux données de haute dimensionnalité 

• Résistance au surapprentissage (overfitting) 
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• Estimation intrinsèque de l'erreur de généralisation (Out-of-Bag) 

• Quantification de l'importance des variables 

 

Paramétrage du modèle 

rf_model <- randomForest( 

Classe ~ ., 

data = training_data_clean, 

ntree = 500, 

importance = TRUE, 

na.action = na.omit 

) 

Paramètres configurés : 

• ntree = 500 : nombre d'arbres dans la forêt. Valeur standard pour assurer la stabilisation 

de l'erreur OOB (Rodriguez-Galiano et al., 2012) 

• importance = TRUE : calcul des mesures d'importance des variables (Mean Decrease 

Accuracy, Mean Decrease Gini) 

• Formule Classe ~ . : régression sur l'ensemble des prédicteurs disponibles 

Les hyperparamètres non spécifiés suivent les valeurs par défaut optimisées : 

• mtry = √p pour la classification (p = nombre de variables) 

• nodesize = 1 (taille minimale des nœuds terminaux) 

• maxnodes = NULL (croissance complète des arbres) 

 

Évaluation des performances 

 

Erreur Out-of-Bag (OOB) 

Le mécanisme bootstrap génère naturellement un ensemble de validation : pour chaque arbre, 

environ 37% des observations ne sont pas utilisées lors de l'entraînement. Ces échantillons OOB 

permettent une estimation non biaisée de l'erreur de généralisation : 

oob_error <- rf_model$err.rate[nrow(rf_model$err.rate), 1] 

accuracy <- (1 - oob_error) * 100 

 

L'exactitude globale (overall accuracy) est calculée comme le complément à 1 du taux d'erreur 

OOB stabilisé. 

 

Matrice de confusion 

 

La matrice de confusion croisée (confusion matrix) détaille les performances classe par classe : 

print(rf_model$confusion) 

 

Cette matrice C de dimension k × k (où k est le nombre de classes) quantifie : 

• Diagonale : classifications correctes (vrais positifs pour chaque classe) 

• Hors-diagonale : confusions inter-classes 

• Erreur de classe : taux de mauvaise classification par classe  

Des métriques dérivées peuvent être calculées : 

• Précision du producteur (producer's accuracy) : Cᵢᵢ / ΣⱼCⱼᵢ 
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• Précision de l'utilisateur (user's accuracy) : Cᵢᵢ / ΣⱼCᵢⱼ 

• Coefficient Kappa : accord inter-observateurs corrigé du hasard 

 

Importance des variables spectrales 

 

Deux indices quantifient la contribution de chaque bande spectrale : 

importance_df <- as.data.frame(importance(rf_model)) 

importance_df <- importance_df[order(-importance_df$MeanDecreaseAccuracy), ] 

 

• Mean Decrease Accuracy (MDA) : dégradation moyenne de l'exactitude OOB lorsque la 

variable est permutée aléatoirement. Reflète l'importance prédictive globale. 

• Mean Decrease Gini (MDG) : réduction moyenne de l'impureté de Gini apportée par les 

divisions sur cette variable. Mesure la capacité de séparation des classes. 

 

L'analyse de ces métriques identifie les régions spectrales discriminantes pour les revêtements 

urbains (typiquement : NIR pour végétation, Red/Blue pour surfaces imperméables). 

 

Classification pixel-basée de l'image complète 

 

Inférence spatiale exhaustive 

Le modèle entraîné est appliqué à l'intégralité de l'image satellite : 

classified_raster <- predict(satellite, rf_model, na.rm = TRUE) 

 

Cette opération réalise une prédiction pixel par pixel : 

1. Pour chaque pixel i de coordonnées (x, y) : 

o Extraction du vecteur de réflectance à 6 dimensions : x ᵢ = [R, G, B, NIR, RedEdge, 

DeepBlue] 

o Propagation dans les 500 arbres de décision 

o Agrégation des votes individuels 

o Attribution de la classe majoritaire 

2. Génération d'un raster catégoriel où chaque valeur de pixel encode une classe de 

revêtement 

Le paramètre na.rm = TRUE exclut les pixels sans données (zones masquées, nuages) du 

processus de classification. 

 

Considérations computationnelles 

 

Pour des images de grande taille (> 10⁹ pixels), des stratégies d'optimisation peuvent être 

implémentées : 

• Traitement par tuiles (tiling) avec recomposition 

• Parallélisation sur multicœurs (predict(..., cores = n)) 

• Sous-échantillonnage spatial contrôlé 

 

Généralisation objet-basée avec seuil de consensus 
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Rationale méthodologique 

La classification pixel-basée génère une mosaïque spatiale granulaire souvent affectée par le "sel 

et poivre" radiométrique. La généralisation objet-basée (Object-Based Image Analysis, OBIA) 

agrège ces informations à l'échelle de segments prédéfinis (parcelles cadastrales, îlots bâtis), 

produisant une cartographie opérationnelle alignée avec les unités de gestion territoriale.  

 

Algorithme de vote majoritaire contraint 

 

Pour chaque polygone P de la couche de référence : 

pixel_values <- extract(classified_raster, vect(sol_carouge[i, ]), ID = FALSE) 

pixel_values <- na.omit(pixel_values[[1]]) 

 

Étape 1 : Extraction des valeurs de classification de tous les pixels nₚ contenus dans P 

class_counts <- table(pixel_values) 

max_class <- names(class_counts)[which.max(class_counts)] 

max_count <- max(class_counts) 

percentage <- (max_count / total_pixels) * 100 

 

Étape 2 : Calcul du tableau de fréquences des classes 

Étape 3 : Identification de la classe modale Cmax et son occurrence nmax 

Étape 4 : Calcul du consensus relatif : ρ = (nmax / nₚ) × 100 

assigned_class <- if (percentage >= 80) max_class else NA_character_ 

Étape 5 : Attribution conditionnelle 

• Si ρ ≥ 80% : le polygone hérite de la classe Cmax 

• Si ρ < 80% : le polygone reste non classifié (hétérogénéité intra-parcellaire excessive) 

 

Justification du seuil de consensus 

 

Le seuil de 80% représente un compromis entre : 

1. Pureté spectrale : garantir une homogénéité minimale de la signature d'occupation du sol  

2. Couverture spatiale : maintenir un taux de classification acceptable de la zone d'étude  

3. Fiabilité cartographique : limiter les erreurs d'attribution en contexte hétérogène 

(interfaces, zones transitionnelles) 

Ce seuil peut être ajusté selon le contexte applicatif : 

• Applications réglementaires : seuils élevés (85-95%) pour haute fiabilité 

• Études exploratoires : seuils modérés (70-75%) pour couverture maximale 

 

Structuration des résultats 

results_list[[i]] <- data.frame( 

OBJECTID = sol_carouge$OBJECTID[i], 

Revetement = assigned_class, 

Pourcentage = round(percentage, 2), 

Total_pixels = total_pixels, 

Classe_majoritaire = max_class, 

stringsAsFactors = FALSE 
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) 

Chaque polygone est enrichi de métadonnées analytiques : 

• Revetement : classe assignée (ou NA si sous-seuil) 

• Pourcentage : consensus relatif de la classe majoritaire  

• Total_pixels : effectif de pixels analysés (proxy de la surface) 

• Classe_majoritaire : classe modale indépendamment du seuil (information diagnostique)  

Cette structure permet des analyses post-hoc de sensibilité au seuil et l'identification de zones 

d'incertitude spatiale. 

 

Validation et métriques de performance 

 

Métriques de couverture spatiale 

n_assigned <- sum(!is.na(sol_carouge_final$Revetement)) 

pct_assigned <- (n_assigned / nrow(sol_carouge_final)) * 100 

 

Taux de classification (classification rate) : proportion de polygones satisfaisant le critère de 

consensus. Indicateur de l'homogénéité globale du territoire et de la robustesse de la typologie.  

 

Distribution des classes prédites 

stats_by_class <- results_df %>% 

filter(!is.na(Revetement)) %>% 

group_by(Revetement) %>% 

summarise( 

Nb_polygones = n(), 

Pct_moyen = mean(Pourcentage), 

Pct_min = min(Pourcentage), 

Total_pixels = sum(Total_pixels) 

) 

Cette analyse agrégée quantifie : 

• Effectif : nombre de polygones par classe (représentativité spatiale) 

• Consensus moyen : homogénéité intra-classe moyenne (indicateur de qualité) 

• Consensus minimal : borne inférieure de certitude (≥80% par construction) 

• Emprise pixellique : surface totale couverte (pondération par taille des entités)  

 

Validation indépendante (recommandation) 

Bien que non implémentée dans le workflow automatisé, une validation rigoureuse nécessiterait :  

1. Stratification d'un jeu de validation : réserve de 20-30% des polygones de référence avant 

entraînement 

2. Échantillonnage aléatoire stratifié : n ≥ 50 points par classe pour intervalles de confiance 

robustes 

3. Calcul de métriques standards : 

o Exactitude globale (overall accuracy) 

o Coefficient Kappa de Cohen 

o F-scores classe par classe 

o Intervalles de confiance à 95% (bootstrapping) 
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4. Analyse d'erreur géographique : identification de zones systématiquement mal classifiées 

(biais topographiques, saisonniers, d'acquisition) 

 

Produits cartographiques 

 

Les sorties géospatiales incluent : 

• Raster pixel-basé : classification exhaustive (format GeoTIFF) 

• Vecteur objet-basé : polygones enrichis (format Shapefile ESRI) 

 

Ces formats standardisés assurent l'interopérabilité avec les SIG (QGIS, ArcGIS) et bases de 

données spatiales (PostGIS). 

 

7.2 Traçabilité scientifique 

sink(file.path(output_dir, "Resume_modele.txt")) 

cat("Données d'entraînement:", nrow(training_data_clean), "pixels\n") 

print(rf_model) 

print(importance(rf_model)) 

print(rf_model$confusion) 

sink() 

Un rapport textuel automatisé documente : 

• Paramétrisation complète du modèle 

• Performances d'entraînement (erreur OOB, matrice de confusion) 

• Importance relative des bandes spectrales 

• Statistiques d'application (couverture, distribution des classes) 

Cette traçabilité est essentielle pour la reproductibilité (reproducible research) et l'audit 

scientifique. 

 

Limites méthodologiques 

 

Échantillonnage d'entraînement : 

• Dépendance à la qualité de la photo-interprétation initiale 

• Représentativité spatiale limitée (268 polygones pour 3720 cibles) 

• Absence de stratification géographique ou temporelle  

Généralisation : 

• Hypothèse d'homogénéité intra-parcellaire (seuil 80% arbitraire) 

• Sensibilité aux effets de bordure (pixels mixtes) 

• Pas de modélisation de l'incertitude spatiale continue  

Validation : 

• Estimation OOB comme proxy de l'exactitude finale (potentiellement optimiste)  

• Absence de validation externe indépendante 

• Pas d'évaluation de la transférabilité spatiale ou temporelle  

 

 

Cette méthodologie hybride combinant classification supervisée par Random Forest et 

généralisation objet-basée contrainte offre un pipeline reproductible pour la cartographie semi-
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automatique de revêtements urbains à partir d'imagerie THRS. L'approche garantit un niveau de 

fiabilité contrôlé (consensus ≥80%) tout en préservant la traçabilité analytique complète, 

répondant aux exigences de rigueur scientifique pour publication académique. 

 

Intégration de données OpenStreetMap 

 

Cette méthodologie a souhaité explorer une approche basée sur l'analyse d'intersection spatiale 

et le principe du maximum de vraisemblance.  Elle a testé une solution automatisée pour 

compléter des attributs manquants dans la couche vectorielle Sol_Carouge_Teledetecte en 

utilisant des données de surfaces géoréférencées disponibles dans la base OSM.  

Données primaires  

Les données primaires consistent en la couche Sol_Carouge_Teledetecte vectorielle de type 

polygone qui contient les informations sur les revêtements de sol détectés par télédétection. 

Cette couche présente des lacunes dans l'attribut Revtmnt, avec des valeurs nulles ou vides pour 

certains polygones. L'utilisation de la fonction st_read() du package sf (Pebesma, 2018) permet 

l'importation des données vectorielles dans l'environnement R tout en préservant les attributs 

géométriques et les métadonnées du système de coordonnées de référence (CRS). Ce package 

implémente la spécification Simple Features définie par l'Open Geospatial Consortium (OGC, 

2011). 

sol_carouge <- st_read(file.path(chemin_data, paste0(nom_shapefile, ".shp")), 

quiet = TRUE) 

Identification des entités à compléter 

Une analyse préliminaire permet d'identifier les polygones auxquels il manque un revêtement suite 

à la télédétection avec seuil de 80% 

  polygones_a_completer <- sol_carouge %>% 

mutate(id_original = row_number()) %>% 

filter(is.na(Revtmnt) | Revtmnt == "") 

Cette opération de filtrage, implémentée via le paradigme tidyverse (Wickham et al., 2019), crée 

un identifiant unique pour chaque entité afin de maintenir la traçabilité lors des opérations 

ultérieures de mise à jour. L'approche fonctionnelle du tidyverse permet une manipulation des 

données transparente et reproductible, critères essentiels en recherche scientifique (Wickham, 

2014). 

Définition de l'emprise spatiale 

L'emprise géographique de la requête est déterminée par le calcul de la boîte englobante 

(bounding box) minimale contenant l'ensemble des polygones de la couche source : 

bbox <- st_bbox(st_transform(sol_carouge, 4326)) 
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Une transformation vers le système WGS 84 (EPSG:4326) est nécessaire, ce système étant le 

standard utilisé par l'API Overpass d'OpenStreetMap pour les requêtes spatiales (Ramm et al., 

2011). La transformation de systèmes de coordonnées s'appuie sur la bibl iothèque PROJ, 

garantissant une précision géodésique conforme aux standards internationaux (Evenden, 2005).  

Requête Overpass API 

L'acquisition des données OSM s'effectue via l'API Overpass, un service de requête optimisé pour 

extraire des sous-ensembles de données de la base OpenStreetMap (Raifer et al., 2019). La 

requête est structurée dans le langage de requête Overpass QL : 

overpass_query <- paste0( 

'[out:json][timeout:90];', 

'(', 

'  way["surface"](',bbox_str,');', 

'  relation["surface"](',bbox_str,');', 

');', 

'out geom;' 

) 

Cette requête extrait l'ensemble des entités linéaires (way) et relationnelles (relation) qui ont un 

attribut surface, dans la bbox spécifiée. Le paramètre timeout:90 définit une limite temporelle de 

90 secondes pour l'exécution de la requête pour éviter les blocages en cas de volume de données 

important. L'architecture distribuée d'Overpass API permet le traitement efficace de requêtes 

complexes sur l'ensemble de la base de données planétaire OSM (Olbricht, 2015). 

Transmission et réception des données 

La communication avec l'API s'effectue via le protocole HTTP POST : 

response <- POST(url, body = list(data = overpass_query), encode = "form") 

 

if (status_code(response) == 200) { 

return(content(response, "parsed")) 

} 

Le code de statut HTTP 200 confirme la réussite de la transaction. Les données sont retournées 

au format JSON et automatiquement parsed en structures de données R natives par la fonction 

content() du package httr (Wickham, 2020). 

Construction des géométries polygonales 

Les données OSM brutes nécessitent une conversion en objets géométriques compatibles avec 

le format Simple Features (SF). Pour chaque entité OSM : 

coords <- do.call(rbind, lapply(element$geometry, function(node) { 



x 

 

c(node$lon, node$lat) 

})) 

 

# Fermer le polygone 

if (nrow(coords) > 2 && !all(coords[1,] == coords[nrow(coords),])) { 

coords <- rbind(coords, coords[1,]) 

} 

Cette étape extrait les coordonnées géographiques des nœuds constitutifs de chaque entité et 

assure la fermeture topologique du polygone en vérifiant que le premier et le dernier point sont 

identiques, condition nécessaire à la validité géométrique selon la spécification Simple Features 

(OGC, 2011). 

Validation et filtrage géométrique 

Seuls les polygones valides, c'est-à-dire composés d'au moins quatre sommets (trois points 

distincts plus le point de fermeture), sont conservés : 

if (nrow(coords) >= 4) { 

poly <- st_polygon(list(coords)) 

 

polygones_list[[length(polygones_list) + 1]] <- list( 

osm_id = as.character(element$id), 

surface = element$tags$surface, 

geometry = poly 

) 

} 

Cette validation prévient les erreurs topologiques qui pourraient compromettre les analyses 

spatiales ultérieures. 

Construction de l'objet spatial 

Les géométries individuelles sont agrégées dans un objet sf unique : 

osm_sf <- st_sf( 

osm_id = sapply(polygones_list, function(x) x$osm_id), 

surface = sapply(polygones_list, function(x) x$surface), 

geometry = st_sfc(lapply(polygones_list, function(x) x$geometry), crs = 4326) 

) 

 

osm_sf <- st_transform(osm_sf, crs_cible) 

Une transformation de coordonnées est appliquée pour aligner le système de référence des 

données OSM sur celui de la couche source, garantissant ainsi la cohérence spatiale des 

opérations d'intersection ultérieures. 
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Analyse d'intersection et attribution 

Pour chaque polygone de la couche source présentant un attribut Revtmnt manquant, une 

analyse d'intersection spatiale est réalisée avec l'ensemble des polygones OSM : 

intersections <- st_intersection(osm_polygones, poly_actuel) 

La fonction st_intersection() calcule l'intersection géométrique entre deux couches vectorielles, 

produisant de nouvelles entités représentant les zones de chevauchement (Pebesma & Bivand, 

2023). 

Calcul des surfaces d'intersection 

Pour chaque intersection détectée, la surface de chevauchement est quantifiée : 

intersections$aire <- as.numeric(st_area(intersections)) 

La fonction st_area() calcule l'aire des polygones dans l'unité du système de coordonnées projeté. 

La conversion en valeur numérique via as.numeric() facilite les opérations de comparaison 

ultérieures. 

Sélection de la correspondance optimale 

Le principe du maximum de vraisemblance spatiale est appliqué pour sélectionner l'attribut OSM 

le plus représentatif : 

meilleure <- intersections %>% 

filter(aire == max(aire)) %>% 

slice(1) 

 

sol_carouge_copie$Revtmnt[idx_original] <- meilleure$surface 

L'attribut surface du polygone OSM qui présente la plus grande surface d'intersection est attribué 

au polygone source. En cas d'égalité parfaite, la fonction slice(1) assure une sélection 

déterministe et ne retient que la première occurrence. 

Création de l'attribut consolidé 

Un nouvel attribut revetement est créé qui renseigne les informations originales et les données 

OSM complémentaires : 

sol_carouge_complete <- sol_carouge_copie %>% 

mutate(revetement = Revtmnt) 

Export de la couche enrichie 
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La couche complétée est exportée au format Shapefile qui garantit l'interopérabilité avec la 

majorité des systèmes d'information géographique (SIG).: 

st_write(sol_carouge_complete, 

chemin_sortie, 

Évaluation de la qualité 

L'efficacité du processus d'enrichissement est quantifiée par le calcul du taux de complétude qui 

permet d'évaluer la couverture spatiale des données OpenStreetMap pour la zone d'étude et 

d'identifier les secteurs nécessitant des levés complémentaires.: 

nb_original <- sum(!is.na(sol_carouge$Revtmnt) & sol_carouge$Revtmnt != "") 

nb_final <- sum(!is.na(sol_carouge_complete$revetement) & 

sol_carouge_complete$revetement != "") 

taux_completion <- (nb_final - nb_original) / 

nrow(polygones_a_completer) * 100 
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Code R 

 


